Divided Backend Duplication Methodology for Balanced Dual Rail Routing

  • Karthik Baddam
  • Mark Zwolinski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5154)


Dual Rail Precharge circuits offer an effective way to address Differential Power Analysis Attacks, provided routing of differential signals is fully balanced. Fat Wire [1] and Backend Duplication [2] methods address this problem. However they do not consider the effect of coupling capacitance on adjacent differential signals. In this paper we propose a new method, Divided Backend Duplication, which is based on Divided Wave Dynamic Differential Logic [3] and Backend Duplication [2], that effectively addresses balanced routing problem of Dual Rail Precharge circuits. Experimental results on an AES test circuit in 130nm technology show improvements in achieving a balanced dual rail design. Further our method can also be successfully applied to FPGAs. Results from an sbox test circuit implementation on a Xilinx FPGA are presented.


Differential Power Analysis Dual Rail Routing Dual Rail FPGA Implementation 


  1. 1.
    Tiri, K., Verbauwhede, I.: Place and Route for Secure Standard Cell Design. In: 6th International Conference on Smart Card Research and Advanced Applications (CARDIS 2004), August 2004, pp. 143–158 (2004)Google Scholar
  2. 2.
    Guilley, S., Hoogvorst, P., Mathieu, Y., Pacalet, R.: The Backend Duplication Method. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 383–397. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Tiri, K., Verbauwhede, I.: A Logic Level Design Methodology for a Secure DPA Resistant ASIC or FPGA Implementation. In: DATE 2004: Proceedings of the conference on Design, automation and test in Europe, pp. 246–251. IEEE Computer Society, Washington (2004)CrossRefGoogle Scholar
  4. 4.
    Ravi, S., Raghunathan, A., Kocher, P., Hattangady, S.: Security in embedded systems: Design challenges. Trans. on Embedded Computing Sys. 3(3), 461–491 (2004)CrossRefGoogle Scholar
  5. 5.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  6. 6.
    Bucci, M., Guglielmo, M., Luzzi, R., Trifiletti, A.: A power consumption randomization countermeasure for DPA-resistant cryptographic processors. In: Macii, E., Paliouras, V., Koufopavlou, O. (eds.) PATMOS 2004. LNCS, vol. 3254, pp. 481–490. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Sokolov, D., Murphy, J., Bystrov, A., Yakovlev, A.: Design and Analysis of Dual-Rail Circuits for Security Applications. IEEE Transactions on Computers 54(4), 449–460 (2005)CrossRefGoogle Scholar
  8. 8.
    Tiri, K., Verbauwhede, I.: Securing Encryption Algorithms against DPA at the Logic Level: Next Generation Smart Card Technology. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 125–136. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Baddam, K., Zwolinski, M.: Path switching: a technique to tolerate dual rail routing imbalances. Design Automation for Embedded Systems (accepted for publication) (2008), http://www.springerlink.com/content/32181g28411w2121, doi:10.1007/s10617-008-9017-z
  10. 10.
    Pramstaller, N., Oswald, E., Mangard, S., Gürkaynak, F.K., Haene, S.: A Masked AES ASIC Implementation. In: Ofner, E., Ley, M. (eds.) Proceedings of Austrochip 2004, Villach, Austria, October 2004, pp. 77–82 (2004)Google Scholar
  11. 11.
    Popp, T., Mangard, S.: Masked Dual-Rail Pre-Charge Logic: DPA-Resistance without Routing Constraints. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 172–186. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Tiri, K., Verbauwhede, I.: Prototype IC with WDDL and Differential Routing DPA Resistance Assessment. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 354–365. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Bucci, M., Giancane, L., Luzzi, R., Trifiletti, A.: Three-Phase Dual-Rail Pre-charge Logic. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 232–241. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Yu, P., Schaumont, P.: Secure FPGA circuits using controlled placement and routing. In: CODES+ISSS 2007: Proceedings of the 5th IEEE/ACM international conference on Hardware/software codesign and system synthesis, pp. 45–50. ACM, New York (2007)CrossRefGoogle Scholar
  15. 15.
    Bouesse, G.F., Renaudin, M., Dumont, S., Germain, F.: DPA on Quasi Delay Insensitive Asynchronous Circuits: Formalization and Improvement. In: DATE 2005: Proceedings of the conference on Design, Automation and Test in Europe, pp. 424–429. IEEE Computer Society, Washington (2005)Google Scholar
  16. 16.
    Weste, N., Harris, D.: CMOS VLSI Design A Circuits and Systems Perspective, 3rd edn. Addison-Wesley, Reading (2004)Google Scholar
  17. 17.
    Si2.org: OpenAccess Coalition (April 2007), http://openeda.si2.org/
  18. 18.
    Cadence Design Systems: ENCOUNTER DIGITAL IC DESIGN PLATFORM (April 2007), http://www.cadence.com/products/digital_ic/index.aspx?lid=dic
  19. 19.
    Tiri, K., Verbauwhede, I.: Synthesis of Secure FPGA Implementations. In: International Workshop on Logic and Synthesis (IWLS 2004), June 2004, pp. 224–231 (2004)Google Scholar
  20. 20.
    Xilinx Inc: Xilinx Inc. (April 2007), http://www.xilinx.com/
  21. 21.
    Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Karthik Baddam
    • 1
  • Mark Zwolinski
    • 1
  1. 1.Electronics Systems and Devices Group, School of Electronics and Computer ScienceUniversity of SouthamptonUK

Personalised recommendations