Hash Functions and RFID Tags: Mind the Gap

  • Andrey Bogdanov
  • Gregor Leander
  • Christof Paar
  • Axel Poschmann
  • Matt J. B. Robshaw
  • Yannick Seurin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5154)

Abstract

The security challenges posed by RFID-tag deployments are well-known. In response there is a rich literature on new cryptographic protocols and an on-tag hash function is often assumed by protocol designers. Yet cheap tags pose severe implementation challenges and it is far from clear that a suitable hash function even exists. In this paper we consider the options available, including constructions based around compact block ciphers. While we describe the most compact hash functions available today, our work serves to highlight the difficulties in designing lightweight hash functions and (echoing [17]) we urge caution when routinely appealing to a hash function in an RFID-tag protocol.

References

  1. 1.
    An, Y., Oh, S.: RFID System for User’s Privacy Protection. In: IEEE Asia-Pacific Conference on Communications, pp. 16–519. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  2. 2.
    Avoine, G., Oechslin, P.: A Scalable and Provably Secure Hash-based RFID Protocol. In: 3rd IEEE Conference on Pervasive Computing and Communications Workshops (PerCom 2005 Workshops), pp. 110–114. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  3. 3.
    Baretto, P., Rijmen, V.: The Whirlpool Hashing Function, http://paginas.terra.com.br/informatica/-paulobarreto/WhirlpoolPage.html
  4. 4.
    Biham, E., Dunkelman, O.: A Framework for Iterative Hash Functions - HAIFA. Presented at Second NIST Cryptographic Hash Workshop, August 24-25 (2006), csrc.nist.gov/groups/ST/hash/
  5. 5.
    Black, J., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: Present: An Ultra-Lightweight Block Cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-Lightweight Implementations for Smart Devices - Security for 1000 Gate Equivalents. In: CARDIS 2008. Springer, Heidelberg (to appear, 2008)Google Scholar
  8. 8.
    Brown, L., Pieprzyk, J., Seberry, J.: LOKI - A Cryptographic Primitive for Authentication and Secrecy Applications. In: Seberry, J., Pieprzyk, J.P. (eds.) AUSCRYPT 1990. LNCS, vol. 453, pp. 229–236. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  9. 9.
    Chang, D.: A Practical Limit of Security Proof in the Ideal Cipher Model: Possibility of Using the Constant As a Trapdoo. In: Several Double Block Length Hash Functions. IACR Cryptology ePrint Archive, Report 2006/481, http://eprint.iacr.org/2006/481
  10. 10.
    Coppersmith, D., Pilpel, S., Meyer, C.H., Matyas, S.M., Hyden, M.M., Oseas, J., Brachtl, B., Schilling, M.: Data authentication using modification detection codes based on a public one way encryption function. U.S. Patent No. 4,908,861 (March 13, 1990)Google Scholar
  11. 11.
    Damgård, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)Google Scholar
  12. 12.
    Dean, R.D.: Formal Aspects of Mobile Code Security. PhD thesis, Princeton University (1999)Google Scholar
  13. 13.
    Dimitriou, T.: A Lightweight RFID Protocol to Protect Against Traceability and Cloning Attacks. In: Proceedings of IEEE International Conference on Security and Privacy of Emerging Areas in Communication Networks (SecureComm 2005), pp. 59–66. IEEE Computer Society, Los Alamitos (2005)CrossRefGoogle Scholar
  14. 14.
    ECRYPT Network of Excellence. The Stream Cipher Project: eSTREAM, http://www.ecrypt.eu.org/stream
  15. 15.
    Good, T., Chelton, W., Benaissa, M.: Hardware Results for Selected Stream Cipher Candidates. In: SASC 2007 (February 2007), http://www.ecrypt.eu.org/stream/
  16. 16.
    Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong Authentication for RFID Systems Using the AES Algorithm. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 357–370. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Feldhofer, M., Rechberger, C.: A Case Against Currently Used Hash Functions in RFID Protocols. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4277, pp. 372–381. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Gao, X., Xian, Z., Wang, H., Shen, J., Huang, J., Song, S.: An Approach to Security and Privacy of RFID System for Supply Chain. In: IEEE International Conference on E-Commerce Technology for Dynamic E-Business, pp. 164–168. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  19. 19.
    Handschuh, H., Knudsen, L.R., Robshaw, M.J.B.: Analysis of SHA-1 in Encryption Mode. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 70–83. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Henrici, D., Götze, J., Müller, P.: A Hash-based Pseudonymization Infrastructure for RFID Systems. In: Georgiadis, P., Lopez, J., Gritzalis, S., Marias, G. (eds.) SecPerU 2006, pp. 22–27. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  21. 21.
    Hirose, S.: Provably Secure Double-Block-Length Hash Functions in a Black-Box Model. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 330–342. Springer, Heidelberg (2005)Google Scholar
  22. 22.
    Hirose, S.: Some Plausible Constructions of Double-Block-Length Hash Functions. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Hirose, S.: How to Construct Double-Block-Length Hash Functions. In: Second Cryptographic Hash Workshop, Santa Barbara (August 2006)Google Scholar
  24. 24.
    Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.-S., Lee, C., Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block Cipher Suitable for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Joux, A.: Multi-Collisions in Iterated Hash Functions. Application to Cascaded Constructions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316. Springer, Heidelberg (2004)Google Scholar
  26. 26.
    Juels, A., Weis, S.A.: Authenticating Pervasive Devices With Human Protocols. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 198–293. Springer, Heidelberg (2005)Google Scholar
  27. 27.
    Kelsey, J., Schneier, B.: Second Preimages on n-bit Hash Functions for Much Less than 2n Work. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 474–490. Springer, Heidelberg (2005)Google Scholar
  28. 28.
    Knudsen, L.R., Lai, X.: New Attacks on all Double Block Length Hash Functions of Hash Rate 1, Including the Parallel-DM. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 410–418. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  29. 29.
    Lai, X., Massey, J.L.: Hash Functions Based on Block Ciphers. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  30. 30.
    Lai, X., Waldvogel, C., Hohl, W., Meier, T.: Security of Iterated Hash Functions Based on Block Ciphers. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 379–390. Springer, Heidelberg (1994)Google Scholar
  31. 31.
    Lee, S., Hwang, Y., Lee, D., Lim, J.: Efficient Authentication for Low-Cost RFID Systems. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3480, pp. 619–627. Springer, Heidelberg (2005)Google Scholar
  32. 32.
    Lim, C., Korkishko, T.: mCrypton - A Lightweight Block Cipher for Security of Low-cost RFID Tags and Sensors. In: Song, J., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2005)Google Scholar
  33. 33.
    Menezes, A.J., Vanstone, S.A., Van Oorschot, P.C.: Handbook of Applied Cryptography. CRC Press, Inc., Boca Raton (1996)Google Scholar
  34. 34.
    Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)Google Scholar
  35. 35.
    National Institute of Standards and Technology. FIPS 46-3: Data Encryption Standard (DES) (October 1999), http://csrc.nist.gov
  36. 36.
    National Institute of Standards and Technology. FIPS 180-2: Secure Hash Standard (August 2002), http://csrc.nist.gov
  37. 37.
    National Institute of Standards and Technology. FIPS 197: Advanced Encryption Standard (AES) (November 2001), http://csrc.nist.gov
  38. 38.
    National Institute of Standards and Technology. FIPS 198: The Keyed-Hash Message Authentication Code (March 2002), http://csrc.nist.gov
  39. 39.
    Ohkubo, M., Suzuki, K., Kinoshita, S.: Cryptographic Approach to Privacy-Friendly Tags. In: RFID Privacy Workshop, MIT, Cambridge (2003)Google Scholar
  40. 40.
    Okeya, K.: Side Channel Attacks Against HMACs Based on Block-Cipher Based Hash Functions. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 432–443. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  41. 41.
    Peyrin, T., Gilbert, H., Muller, F., Robshaw, M.J.B.: Combining Compression Functions and Block Cipher-Based Hash Functions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 315–331. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  42. 42.
    Poschmann, A., Leander, G., Schramm, K., Paar, C.: New Lightweight DES Variants Suited for RFID Applications. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer, Heidelberg (2007)Google Scholar
  43. 43.
    Preneel, B., Bosselaers, A., Govaerts, R., Vandewalle, J.: Collision-Free Hash Functions Based on Block Cipher Algorithms. In: Proceedings 1989 International Carnahan Conference on Security Technology, pp. 203–210. IEEE, Los Alamitos (1989)CrossRefGoogle Scholar
  44. 44.
    Preneel, B.: Ph.D. thesis. Katholieke Universiteit Leuven (1993)Google Scholar
  45. 45.
    Quisquater, J.-J., Girault, M.: 2n-bit Hash-Functions Using n-bit Symmetric Block Cipher Algorithms. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 102–109. Springer, Heidelberg (1990)Google Scholar
  46. 46.
    Rivest, R.L.: RFC 1321: The MD5 Message-Digest Algorithm (April 1992 ), http://www.ietf.org/rfc/rfc1321.txt
  47. 47.
    Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 16–31. Springer, Heidelberg (2004)Google Scholar
  48. 48.
    Seurin, Y., Peyrin, T.: Security Analysis of Constructions Combining FIL Random Oracles. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 119–136. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  49. 49.
    Shamir, A.: SQUASH - a New MAC With Provable Security Properties for Highly Constrained Devices Such As RFID Tags. In: Nyberg, K. (ed.) FSE 2008, Springer, Heidelberg (to appear, 2008)Google Scholar
  50. 50.
    Steinberger, J.P.: The Collision Intractability of MDC-2 in the Ideal-Cipher Model. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 34–51. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  51. 51.
    Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)Google Scholar
  52. 52.
    Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)Google Scholar
  53. 53.
    Yoshida, H., Watanabe, D., Okeya, K., Kitahara, J., Wu, J., Kucuk, O., Preneel, B.: MAME: A Compression Function With Reduced Hardware Requirements. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 148–165. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  54. 54.
    Yu, Y., Yang, Y., Fan, Y., Min, H.: Security Scheme for RFID Tag. Auto-ID Labs white paper WP-HARDWARE-022, http://www.autoidlabs.org/

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Andrey Bogdanov
    • 1
  • Gregor Leander
    • 1
  • Christof Paar
    • 1
  • Axel Poschmann
    • 1
  • Matt J. B. Robshaw
    • 2
  • Yannick Seurin
    • 2
  1. 1.Horst Görtz Institute for IT SecurityRuhr-University BochumGermany
  2. 2.Orange LabsIssy les MoulineauxFrance

Personalised recommendations