Recovering Secret Keys from Weak Side Channel Traces of Differing Lengths

  • Colin D. Walter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5154)

Abstract

Secret key recovery from weak side channel leakage is always a challenge in the presence of standard counter-measures. The use of randomised exponent recodings in RSA or ECC means that, over multiple re-uses of a key, operations which correspond to a given key bit are not aligned in the traces. This enhances the difficulties because traces cannot be averaged to improve the signal-to-noise ratio.

The situation can be described using a hidden Markov model (HMM) but the standard solution is computationally infeasible when many traces have to be processed. Previous work has not provided a satisfactory way out. Here, instead of ad hoc sequential processing of complete traces, trace prefixes are combined naturally in parallel. This results in the systematic extraction of a much higher proportion of the information theoretic content of the leakage, enabling many keys of typical ECC length to be recovered with a computationally feasible search through a list of most likely values. Moreover, likely errors can now be located very easily.

Keywords

Side channel leakage simple power analysis SPA Hidden Markov Models Forward-Backward Algorithm Viterbi Algorithm 

References

  1. 1.
    Digital Signature Standard (DSS), FIPS PUB 186-2 (Appendix 6), U.S. National Institute of Standards and Technology (January 27, 2000)Google Scholar
  2. 2.
    Brier, E., Joye, M.: Weierstraß Elliptic Curves and Side-Channel Attacks. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 335–345. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Green, P.J., Noad, R., Smart, N.: Further Hidden Markov Model Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 61–74. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Ha, J.C., Moon, S.J.: Randomized Signed-Scalar Multiplication of ECC to Resist Power Attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 551–563. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Karlof, C., Wagner, D.: Hidden Markov Model Cryptanalysis. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 17–34. Springer, Heidelberg (2003)Google Scholar
  6. 6.
    Kocher, P.: Timing Attack on Implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  7. 7.
    Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Liardet, P.-Y., Smart, N.P.: Preventing SPA/DPA in ECC Systems using the Jacobi Form. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 391–401. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Oswald, E., Aigner, M.: Randomized Addition-Subtraction Chains as a Countermeasure against Power Attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 39–50. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Rabiner, L.R., Juang, B.H.: An Introduction to Hidden Markov Models. IEEE ASSP Magazine 3(1), 4–16 (1986)CrossRefGoogle Scholar
  11. 11.
    Viterbi, A.J.: Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm. IEEE Trans. Information Theory 13(2), 260–269 (1967)MATHCrossRefGoogle Scholar
  12. 12.
    Walter, C.D.: Breaking the Liardet-Smart Randomized Exponentiation Algorithm. In: Proc. Cardis 2002, San José, November 2002, pp. 59–68. Usenix Association, Berkeley (2002)Google Scholar
  13. 13.
    Walter, C.D.: Issues of Security with the Oswald-Aigner Exponentiation Algorithm. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 208–221. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Walter, C.D.: Longer Randomly Blinded RSA Keys may be Weaker than Shorter Ones. In: Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 303–316. Springer, Heidelberg (2007)Google Scholar
  15. 15.
    Yen, S.-M., Chen, C.-N., Moon, S.J., Ha, J.C.: Improvement on Ha-Moon Randomized Exponentiation Algorithm. In: Park, C., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 154–167. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Colin D. Walter
    • 1
  1. 1.Comodo CA Research LaboratoryBradfordUK

Personalised recommendations