Advertisement

Attack and Improvement of a Secure S-Box Calculation Based on the Fourier Transform

  • Jean-Sébastien Coron
  • Christophe Giraud
  • Emmanuel Prouff
  • Matthieu Rivain
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5154)

Abstract

At CHES 2006, a DPA countermeasure based on the Fourier Transform was published. This generic countermeasure aims at protecting from DPA any S-box calculation used in symmetric cryptosystems implementations. In this paper, we show that this countermeasure has a flaw and that it can be broken by first order DPA. Moreover, we have successfully put into practice our attack on two different S-box implementations. Finally, we propose an improvement of the original countermeasure and we prove its security against first order DPA.

Keywords

Boolean Function Sensitive Variable Intermediate Variable Loop Index Side Channel Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Akkar, M.-L., Giraud, C.: An Implementation of DES and AES, Secure against Some Attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 309–318. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Blömer, J., Guajardo, J., Krummel, V.: Provably Secure Masking of AES. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence of hardware countermeasures. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 252–263. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Coron, J.-S., Prouff, E., Rivain, M.: Side Channel Cryptanalysis of a Higher Order Masking Scheme. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 28–44. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Goubin, L.: A Sound Method for Switching between Boolean and Arithmetic Masking. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 3–15. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Goubin, L., Patarin, J.: DES and Differential Power Analysis – The Duplication Method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Gueron, S., Parzanchevsky, O., Zuk, O.: Masked Inversion in GF(2n) Using Mixed Field Representations and its Efficient Implementation for AES. In: Nedjah, N., Mourelle, L.M. (eds.) Embedded Cryptographic Hardware: Methodologies and Architectures, pp. 213–228. Nova Science Publishers (2004)Google Scholar
  8. 8.
    Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  9. 9.
    Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  10. 10.
    Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis Resistant Description of the AES S-box. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Prouff, E., Giraud, C., Aumonier, S.: Provably Secure S-Box Implementation Based on Fourier Transform. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Rivain, M., Dottax, E., Prouff, E.: Block Ciphers Implementations Provably Secure Against Second Order Side Channel Analysis. Cryptology ePrint Archive, Report 2008/021 (2008), http://eprint.iacr.org/

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jean-Sébastien Coron
    • 1
  • Christophe Giraud
    • 2
  • Emmanuel Prouff
    • 2
  • Matthieu Rivain
    • 1
    • 2
  1. 1.University of Luxembourg 
  2. 2.Oberthur Technologies 

Personalised recommendations