Advertisement

The Evolution of Groundwater Exploration Methods in the Moroccan Oases through History, and Managing Ecological Risk of their Present Pollution

  • Mohammed Messouli
  • Giuseppe Messana
  • Mohamed Yacoubi-Khebiza
  • Asma El Alami El Filali
  • Ali Ait Boughrous
  • Mohamed Boulanouar
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Moroccan Groundwater Systems in most oases are experiencing drastic changes due both to global scale stresses, and the cumulative effects of local and regional scale changes. The adaptive capacity and resilience of GW are severely affected because of the high magnitude of drivers.

The Tafilalt Oasis is located in the Sahara SE Morocco, with an area of about 1,370 km2. Ramsar site no. 1483 which is part of UNESCO Biosphere Reserve is a site of Biological and Ecological Interest. It comprises a series of oases and the reservoir of one of the oldest dams in Morocco (Hassan Eddakhil). Significant atmospheric and desert Saharan events such as sand invasion often occur in the region affecting the world’s climate. Irrigation in the oases mostly depends on a dense and intricate network of canals distributed across the oasis. In the northern part of the Tafilalt oasis, water for irrigation canals has, since the late-14th century, also been provided by khettara (subterranean channels draining perched water tables). Starting from the early 1970s, the remaining active khettaras experienced a flow reduction, and over the next two decades many more khettaras dried up and were abandoned. The diminishing and abandonment of khettaras is attributed to the Hassan Eddakhil dam and its new reservoir upstream from the Tafilalt oasis. The dam’s control of downstream water releases has meant that many river channels downstream have water only during certain times of the year (thus affecting the Minimum Instream Flow), a phenomenon which is worsened by excessive water extraction for agriculture, human consumption and droughts that have become more common during the past two decades. Farmers are still not rapidly adopting techniques and equipment that economize water irrigation. The ground water (GW) mining in Tafilalt was enhanced by low-cost boring technology and cheaper imported and locally produced pumps. Pumps became a part and parcel of the green revolution and poverty alleviation but present development of uncontrolled GW markets threatens the sustainable use of GW reserves.

Keywords

Septic System Sandy Desert Atlas Mountain Perched Water Table Motor Pump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennani, A., Buret, J. & Senhaji, F. 2001. Communication Nationale Initiale a la Convention Cadre des Nations Unies sur les changements climatiques" Ministere de l’Amenagement du Territoire, de l’Urbanisme de l’Habitat et de l’Environnement. pp.101.Google Scholar
  2. Boulton, A.J. 2000. The subsurface macrofauna. In: Streams and Ground Waters, ed. J.B. Jones & P.J. Mulholland, pp. 337–361. San Diego, USA: Academic Press.CrossRefGoogle Scholar
  3. Brunke, M. & Gonser, T. 1997. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biology 37: 1–33.CrossRefGoogle Scholar
  4. Chapelle, F.H. 2001. Groundwater Microbiology and Geochemistry. New York, USA: John Wiley & Sons.Google Scholar
  5. Chaponniere, A. & Smakhtin, V. 2006. A review of climate change scenarios and preliminary rainfall trend analysis in the Oum er Rbia Basin, Morocco. Working Paper 110 (Drought Series: Paper 8) Colombo, Sri Lanka: International Water Management Institute (IWMI).Google Scholar
  6. Culver, D.C. & Sket, B. 2000. Hotspots of subterranean biodiversity in caves and wells. Journal of Cave and Karst Studies 62: 11–17.Google Scholar
  7. Danielopol, D.L. 1983. Der Einfluss organischer Verschmutzung auf das Grundwasser-Ökosystem der Donau im Raum Wien und Niederösterreich. Bundesministerium für Gesundheit und Umweltschutz, Forschungsberichte 5/83: 5–160.Google Scholar
  8. Danielopol, D.L., Griebler, C., Gunatilaka, A. & Notenboom, J. 2003. Present state and prospects for groundwater ecosystems. Environmental Conservation 30: 104–130.CrossRefGoogle Scholar
  9. Daily, G.C., Söderqvist, T., Aniyar, S., Arrow, K., Dasgupta, P., Ehrlich, P.R., Folke, C., Jansson, A.M., Jansson, B.-O., Kautsky, N., Levin, S., Lubchenco, J., Mäler, K.-G., Simpson, D., Starrett, D., Tilman, D. & Walker, B. 2000. The value of nature and the nature of value. Science 289: 395–396.CrossRefGoogle Scholar
  10. Fleming, D. & Barnes, N. 1993. The worldwide distribution of filtration gallery systems and the social mechanisms underlying their construction and management, Culture and Environment: A Fragile Coexistence, Proceedings of the 24th Annual Chacmool Conference, 1991, Calgary, Alberta, pp. 363-369, University of Calgary.Google Scholar
  11. Gibert, J., Danielopol, D.L. & Stanford, J.A., eds. 1994. Groundwater Ecology. San Diego, USA: Academic Press.Google Scholar
  12. Ghiorse, W.C. & Wilson, J.T. 1988. Microbial ecology of the terrestrial subsurface. Advances in Applied Microbiology 33: 107–172.CrossRefGoogle Scholar
  13. Glick, T.F. 1979. Islamic and Christian Spain in the Early Middle Ages. Princeton University Press, Princeton.Google Scholar
  14. Goblot, H. 1979. Les Qanats: Une Technique d’Acquisition de I’ Eau. Mouton, Paris.Google Scholar
  15. Hansen, J., Ruedy, R., Sato, M. & Lo, K. 2002. Global warming continues. Science 295: 275.CrossRefGoogle Scholar
  16. Hulme, M.; Wigley, T.; Barrow, E.; Raper, S.; Centella, A.; Smith, S. & Chipanshi, A. 2000. Using a Climate Scenario Generator for Vulnerability and Adaptation Assessment." MAGICC and SCENGEN Version 2.4 Workbook, Norwich, U.K.: Climate Research Unit. pp.52.Google Scholar
  17. Humphreys, W.F. 2000. The hypogean fauna of the Cape Range Peninsula and Barrow Island, Northwestern Australia. In: Subterranean Ecosystems. Ecosystems of the World Volume 30, eds. H. Wilkens, D.C. Culver & W.F. Humphreys, pp. 581–602. Amsterdam, The Netherlands: Elsevier.Google Scholar
  18. IPCC. 2001. Climate Change 2001: the Scientific Basis, ed. J.T. Hougthon, Y. Ding, D.J. Griggs, M. Noguer, P.J. Van der Linden, X. Dai, K. Maskell & C.A. Johnson. Cambridge, UK: Cambridge University PressGoogle Scholar
  19. Joffe, G. 1992. Irrigation and water supply systems in North Africa, Moroccan Studies, 2, 47-55.Google Scholar
  20. Lightfoot, D.R. & Miller, J.A. 1996. Sijilmassa: The rise and fall of a walled oasis in medieval Morocco, Annals of the Association of American Geographers, 86, 78-101.CrossRefGoogle Scholar
  21. Malard, F., Plenet, S. & Gibert, J. 1996. The use of invertebrates in groundwater monitoring: a rising research field. Ground Water Monitoring and Remediation 16: 103–116.CrossRefGoogle Scholar
  22. Margat, J. 1961. Carte Hydrogeologique au 1/50000 de la Plaine du Tafilalt. Notes et Mémoires du Service Géologique, Service Géologique du Maroc, Rabat.Google Scholar
  23. Margat, J. 1959. Note sur la morphologie du site de Sigilmassa (Tafilalt), Hesperis, 46, 254-260.Google Scholar
  24. Meybeck, M., 2003. Global analysis of river systems: from earth system controls to anthropocene syndromes. Philosophical Transactions of The Royal Society of London Series B, 358, 1935- 1955.CrossRefGoogle Scholar
  25. Meybeck, M. 1998. The IGBP Water Group: a response to a growing global concern. Newsletters, 36, 8-12.Google Scholar
  26. Notenboom, J. 2001. Managing ecological risks of groundwater pollution. In: Groundwater Ecology. A Tool for Management of Water Resources, eds. C. Griebler, D.L. Danielopol, J. Gibert, H.P. Nachtnebel & J. Notenboom, pp. 248–262. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
  27. Ronen, D. & Magaritz, M. 1991. Groundwater quality as affected by managerial decisions in agricultural areas: effect of land development and irrigation with sewage effluents. In: Hydrological Basis of Ecologically Sound Management of Soil and Groundwater, ed. H.P. Nachtnebel & K. Kovar, pp. 153–162. Wallingford, UK: IAHS Press.Google Scholar
  28. Schwille, F. 1976. Anthropogenically reduced groundwaters. Hydrological Sciences Bulletin 21: 629–645. Seckler, D., Amarasinghe, U., Molden, D., deCrossRefGoogle Scholar
  29. Stanley, E.H. & Boulton, A.J. 1995. Hyporheic processes during flooding and drying in a Sonoran Desert stream. 1. Hydrologic and chemical dynamics. Archiv für Hydrobiologie 134: 1–26.Google Scholar
  30. Turner, B.L. & Haygarth, P.M. 2001. Phosphorus solubilization in rewetted soils. Nature 411: 258.CrossRefGoogle Scholar
  31. Ward, J.V., Bretschko, G., Brunke, M., Danielopol, D., Gibert, J., Gonser, T. & Hildrew, A.G. 1998. The boundaries of river systems: the metazoan perspective. Freshwater Biology 40: 531–570.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mohammed Messouli
    • 1
  • Giuseppe Messana
    • 2
  • Mohamed Yacoubi-Khebiza
    • 1
  • Asma El Alami El Filali
    • 1
  • Ali Ait Boughrous
    • 1
  • Mohamed Boulanouar
    • 1
  1. 1.Département de BiologieLaboratoire d’Hydrobiologie Ecotoxicologie et Assainissement Faculté des Sciences SemlaliaMarrakechMorocco
  2. 2.Istituto per lo Studio degli Ecosistemi del CNR; ISE-CNR Sede di FirenzeFirenzeItaly

Personalised recommendations