Robert Féron: A Pioneer in Soft Methods for Probability and Statistics

  • Jean-Paul Auray
  • Henri Prade
Part of the Advances in Soft Computing book series (AINSC, volume 48)

Abstract

Robert Féron invented fuzzy random variables in the mid-seventies. As such, his works deserve due recognition among specialists of soft methods in probability and statistics. This short paper surveys his contributions to information theory, generalized distances, and the joint use of probability and fuzzy set theories. An extensive bibliography of his publications is provided.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Féron, R.: Information et corrélation. Note CRAS 234, 1344–1345 (1952)Google Scholar
  2. 2.
    Féron, R.: Convexité et information. Note CRAS 234, 1840–1841 (1952)MATHGoogle Scholar
  3. 3.
    Féron, R.: De la régression. Note CRAS 234, 2143–2145 (1952)MATHGoogle Scholar
  4. 4.
    Féron, R.: Information, Régression, Corrélation. Thèse pour l’obtention du grade de Docteur es Sciences mathématiques (Thèse d’Etat), Pub Inst Stat De l’Univ Paris (1956)Google Scholar
  5. 5.
    Féron, R.: De l’information. Note CRAS 240, 1945–1947 (1958)Google Scholar
  6. 6.
    Féron, R.: Espaces à écart de Fréchet. Note CRAS 262, 278–280 (1966)MATHGoogle Scholar
  7. 7.
    Féron, R.: Ensembles aléatoires flous. Note CRAS, Ser. A 282, 903–906 (1976)MATHGoogle Scholar
  8. 8.
    Féron, R.: Economie d’échange aléatoire floue. Note CRAS, Ser. A 282, 1379–1382 (1976)MATHGoogle Scholar
  9. 9.
    Féron, R.: Ensembles flous, ensembles aléatoires flous, et économie aléatoire floue. Publications Econométriques IX(1), 25–64 (1976)Google Scholar
  10. 10.
    Féron, R.: Ensembles flous attachés un ensemble aléatoire flou. Publications Econométriques IX(2), 51–65 (1976)Google Scholar
  11. 11.
    Féron, R.: Sur les notions de distance et d’écart dans une structure floue et leurs applications aux ensembles aléatoires flous. Cas où le référentiel n’est pas métrique. Note CRAS, Ser. A 289, 35–38 (1979)MATHGoogle Scholar
  12. 12.
    Féron, R.: Ensembles aléatoires flous dont la fonction d’appartenance prend ses valeurs dans un treillis distributif fermé. Publications Econométriques XII(2), 81–118 (1979); Bibliographical addendum XII(2), 63–67 Google Scholar
  13. 13.
    Féron, R.: Probabilistic and statistical study of random fuzzy sets whose referential is ℝN. In: Lasker, G.E. (ed.) Proceedings of the International Congress on Applied Systems Research and Cybernetics (Acapulco, 1980) Applied Systems and Cybernetics. Fuzzy Sets and Systems, Possibility Theory and Special Topics in Systems Research, vol. VI, pp. 2831–2836. Pergamon Press, New York (1981)Google Scholar
  14. 14.
    Féron, R.: On the notions of distance and deviation in a fuzzy structure. In: Trapple, R., Klir, G., Pichler, F. (eds.) Proceedings of the 5th European Meeting on Cybernetics and Systems Research (Vienna, 1980) Progress in Cybernetics and Systems Research, vol. 8, pp. 443–447. Hemisphere Pub. Corporation, Washington (1982)Google Scholar
  15. 15.
    Féron, R.: Structure pré-uniforme classique et structure pré-uniforme floue. Note de travail, ERA 639. CNRS-Université Lyon 1 (1987)Google Scholar
  16. 16.
    Féron, R., Féron, M.: Fuzzy specifications and random fuzzy events considered as basic tools for statistical prediction. Fuzzy Sets Syst 28, 285–293 (1988)MATHCrossRefGoogle Scholar
  17. 17.
    Féron, R., Fourgeaud, C.: Information et régression. Note CRAS 232, 1636–1638 (1951)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jean-Paul Auray
    • 1
  • Henri Prade
    • 2
  1. 1.LIRIS-MA2D, CNRS and Université Lyon 1VilleurbanneFrance
  2. 2.IRITCNRS and Université Toulouse 3ToulouseFrance

Personalised recommendations