Knowledge Aquisition and Data Storage in Mobile GeoSensor Networks

  • Peggy Agouris
  • Dimitrios Gunopulos
  • Vana Kalogeraki
  • Anthony Stefanidis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4540)


In this paper we address the issue of mobility in geosensor networks, inspired by the computational challenges imposed by modern surveillance applications. More specifically we consider networks of optical sensors (video and still cameras), and present a spatiotemporal framework for the management of information captured in them. In this context, mobility is addressed at two levels, considering mobile objects in the area monitored by a network, and mobile sensors observing such objects. Our interest lies on the data acquisition and storage problems that arise in this setting. We identify certain key issues behind the development of a general framework for knowledge acquisition and data storage in geosensor networks, namely: spatiotemporal object modeling; similarity metrics to compare spatiotemporal objects; storing and indexing spatiotemporal objects in a geosensor network; and network management using spatiotemporal techniques. We present some emerging approaches that address these key issues and thus outline a general framework for information and sensor management in mobile sensor networks.


Mobility surveillance modeling spatiotemporal similarity indexing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aach, J., Church, G.: Aligning Gene Expression Time Series Data. Bioinformatics 17, 495–508 (2001)CrossRefGoogle Scholar
  2. 2.
    Abdelzaher, T., Blum, B., Cao, Q., Evans, D., George, J., George, S., He, T., Luo, L., Son, S., Stoleru, R., Stankovic, J., Wood, A.: EnviroTrack: Towards an Environmental Computing Paradigm for Distributed Sensor Networks. In: Proc. Int. Conf. on Distributed Computing Systems (ICDCS 2004), pp. 582–589 (2004)Google Scholar
  3. 3.
    Agouris, P., Stefanidis, A.: Efficient Summarization of SpatioTemporal Events. Communications of the ACM 46(1), 65–66 (2003)CrossRefGoogle Scholar
  4. 4.
    Agrawal, R., Faloutsos, C., Swami, A.: Efficient Similarity Search in Sequence Databases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  5. 5.
    Agrawal, R., Lin, K., Sawhney, H.S., Shim, K.: Fast Similarity Search in the Presence of Noise, Scaling and Translation in Time-Series Databases. In: Proc. of the VLDB, pp. 490–501 (1995)Google Scholar
  6. 6.
    Ailamaki, A., Faloutsos, C., Fischbeck, P., Small, M., VanBriesen, J.: An Environmental Sensor Network to Determine Drinking Water Quality and Security. SIGMOD Record 32(4), 47–52 (2003)CrossRefGoogle Scholar
  7. 7.
    Altenis, S., Jensen, C.S.: Indexing of Moving Objects for Location-Based Services, Department of Computer Science, Aalborg University (2002)Google Scholar
  8. 8.
    Aslam, J., Butler, Z., Constantin, F., Crespi, V., Cybenko, G., Rus, D.: Tracking a Moving Object with a Binary Sensor Network. In: Proc. Int. Conf. on Embedded Networked Sensor Systems (SenSys 2003), pp. 150–161 (2003)Google Scholar
  9. 9.
    Bandyopadhyay, S., Coyle, E.J.: An Energy Efficient Hierarchical Clustering Algorithm for Wireless Sensor Networks. In: IEEE INFOCOM 2003, pp. 1713–1723 (2003)Google Scholar
  10. 10.
    Bar-Joseph, Z.G., Gerber, D., Gifford, T.: A New Approach to Analyzing Gene Expression Time Series Data. In: Proc. Annual Int. Conf. on Research in Computational Molecular Biology, pp. 39–48 (2002)Google Scholar
  11. 11.
    Berndt, D., Clifford, J.: Using Dynamic Time Warping to Find Patterns in Time Series. In: Proc. of KDD Workshop, pp. 359–370 (1994)Google Scholar
  12. 12.
    Beymer, D., McLaughlan, P., Coifman, B., Malik, J.: A Real-Time Computer Vision System for Measuring Traffic Parameters. In: Computer Vision Pattern Recognition (CVPR 1997), pp. 495–500 (1997)Google Scholar
  13. 13.
    Bolles, R., Nevatia, R.: A Hierarchical Video Event Ontology in Owl, Pacific Northwest National Laboratory, Technical Peport PNNL-14981 (2004)Google Scholar
  14. 14.
    Bollobas, B., Das, G., Gunopulos, D., Mannila, H.: Time-Series Similarity Problems and Well-Separated Geometric Sets. In: Proc. of the 13th SCG, pp. 243–307 (1997)Google Scholar
  15. 15.
    Bozkaya, T., Yazdani, N., Ozsoyoglu, M.: Matching and Indexing Sequences of Different Lengths. In: Proc. of the CIKM, pp. 128–135 (1997)Google Scholar
  16. 16.
    Brooks, R., Ramanathan, P., Sayeed, A.: Distributed Target Classification and Tracking in Sensor Networks. Proceedings of the IEEE 91(8), 1163–1171 (2003)CrossRefGoogle Scholar
  17. 17.
    Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stonebraker, M., Tatbul, N., Zdonik, S.: Monitoring Streams - A New Class of Data Management Applications. In: Proc. VLDB (2002)Google Scholar
  18. 18.
    Cerpa, A., Elson, J., Hamilton, M., Zhao, J., Estrin, D., Girod, L.: Habitat Monitoring: Application Driver for Wireless Communications Technology. In: Workshop on Data communication in Latin America and the Caribbean, San Jose, Costa Rica, pp. 20–41 (2001)Google Scholar
  19. 19.
    Chang, T.H., Gong, S., Ong, E.J.: Tracking Multiple People Under Occlusion Using Multiple Cameras. In: Proc. British Machine Vision Conf. (2000)Google Scholar
  20. 20.
    Chen, A., Muntz, R., Srivastava, M.: Smart Rooms. In: Cook, D., Das, S. (eds.) Smart Environments: Technology, Protocols and Applications, Wiley, Chichester (2004)Google Scholar
  21. 21.
    Collins, R., Lipton, A., Fujiyoshi, H., Kanade, T.: Algorithms for Cooperative Multisensor Surveillance. Proceedings of IEEE 89(10), 1456–1477 (2001)CrossRefGoogle Scholar
  22. 22.
    Conner, S., Heidemann, J., Krishnamurthy, L., Wang, X., Yarvis, M.: Workplace Applications of Sensor Networks. In: Bulusu, N., Jha, S. (eds.) Wireless Sensor Networks: A Systems Perspective, Artech House, pp. 289–308 (2005)Google Scholar
  23. 23.
    Das, G., Gunopulos, D., Mannilaz, H.: Finding Similar Time Series. In: Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 88–100. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  24. 24.
    Dockstader, S., Tekalp, A.M.: Multiple Camera Fusion for Multi-Object Tracking. In: Proc. IEEE Workshop on Multi-Object Tracking (WOMOT 2001), pp. 95–100 (2001)Google Scholar
  25. 25.
    Elad, M., Tal, A., Ar, S.: Directed Search in a 3D Objects Database. Technical Report, HP Labs (2000)Google Scholar
  26. 26.
    Eltoukhy, H., Salama, K.: Multiple Camera Tracking, Stanford Image Sensors Group, Electrical Engineering Department, Stanford University (2001)Google Scholar
  27. 27.
    Faradjian, A., Gehrke, J., Bonnet, P.: GADT: A Probability Space ADT for Representing and Querying the Physical World. In: Int. Conf. on Data Engineering (ICDE 2002), pp. 201–206 (2002)Google Scholar
  28. 28.
    Gehrke, J., Korn, F., Srivastava, D.: On Computing Correlated Aggregates Over Continual Data Streams. In: ACM Int. Conf. on Management of Data (SIGMOD), pp. 13–24 (2001)Google Scholar
  29. 29.
    Hadjeleftheriou, M., Kollios, G., Tsotras, V., Gunopulos, D.: Efficient Indexing of Spatiotemporal Objects. In: Jensen, C.S., Jeffery, K.G., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 251–268. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  30. 30.
    Halkidi, M., Papadopoulos, D., Kalogeraki, V., Gunopulos, D.: Resilient and Energy Efficient Tracking in Sensor Networks. Int. J. of Wireless and Mobile Computing (2007) (in press)Google Scholar
  31. 31.
    Huang, Q., Lu, C., Roman, G.: Mobicast: Just-in-Time Multicast for Sensor Networks under Spatiotemporal Constraints. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 442–457. Springer, Heidelberg (2003a)CrossRefGoogle Scholar
  32. 32.
    Huang, Q., Lu, C., Roman, G.: Spatiotemporal Multicast in Sensor Networks. In: Proc. Int. Conf. on Embedded Networked Sensor Systems (SenSys 2003), pp. 205–217 (2003b)Google Scholar
  33. 33.
    Javed, O., Khan, S., Rasheed, Z., Shah, M.: Camera Handoff: Tracking in Multiple Uncalibrated Stationary Cameras. In: Proc. Workshop on Human Motion, pp. 113–121 (2000)Google Scholar
  34. 34.
    Javed, O., Rasheed, Z., Shafique, K., Shah, M.: Tracking across Multiple Cameras with Disjoint Views. In: IEEE Int. Conf. on Computer Vision, vol. 2, pp. 952–957 (2003)Google Scholar
  35. 35.
    Jaynes, Ch.: Acquisition of a Predictive Markov Model using Object Tracking and Correspondence in Geospatial Video Surveillance Networks. In: Stefanidis, A., Nittel, S. (eds.) GeoSensor Networks, pp. 149–166 (2004)Google Scholar
  36. 36.
    Jaynes, C., Webb, S., Steele, R., Xiong, Q.: An Open-Development Environment for the Evaluation of Video Surveillance Systems. In: Proc. PETS, Copenhagen (2002)Google Scholar
  37. 37.
    Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L., Rubenstein, D.: Energy-Efficient Computing for Wildlife Tracking: Design Tradeoffs and Early Experiences with ZebraNet. In: Proc. Intl. Conf. On Architectural Support for Programming Languages and Operating Systems (ASPLOS-X), San Jose, CA, pp. 96–107 (2002)Google Scholar
  38. 38.
    Keogh, E.: Exact Indexing of Dynamic Time Warping. In: Proc. VLDB, pp. 406–417 (2002)Google Scholar
  39. 39.
    Kim, S., Park, S., Chu, W.: An Index-Based Approach for Similarity Search supporting Time Warping in Large Sequence Databases. In: Proc. of the ICDE, pp. 607–614 (2001)Google Scholar
  40. 40.
    Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions, and Reversals. Soviet Physics-Doklady 10(10), 707–710 (1966)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Liu, J., Reich, J., Cheung, P., Zhao, F.: Distributed Group Management for Track Initiation and Maintenance in Target Localization Applications. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 113–128. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  42. 42.
    Madden, S., Franklin, M., Hellerstein, J., Hong, W.: Tag: a Tiny Aggregation Service for ad-hoc Sensor Networks. In: OSDI 2002, pp. 131–146 (2002)Google Scholar
  43. 43.
    Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D.: Wireless Sensor Networks for Habitat Monitoring, Technical Report IRB-TR-02-006, Intel Laboratory, UC Berkeley (2002)Google Scholar
  44. 44.
    Makris, D., Ellis, T.: Path Detection in Video Surveillance. Image and Vision Computing Journal 20(12), 895–903 (2002)CrossRefGoogle Scholar
  45. 45.
    Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G., Olston, C., Rosenstein, J., Varma, R.: Query Processing, Resource Management, and Approximation in a Data Stream. In: Proc. Conference on Innovative Data Systems Research (CIDR), pp. 245–256 (2003)Google Scholar
  46. 46.
    Nascimento, M., Pfoser, D., Theodoridis, Y.: Synthetic and Real Spatiotemporal Datasets. Data Engineering Bulletin 26(2), 26–32 (2003)Google Scholar
  47. 47.
    Needham, C.J., Boyle, R.D.: Performance Evaluation Metrics and Statistics for Positional Tracker Evaluation. In: Crowley, J.L., Piater, J.H., Vincze, M., Paletta, L. (eds.) ICVS 2003. LNCS, vol. 2626, pp. 278–289. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  48. 48.
    Nittel, S., Stefanidis, A.: GeoSensor Networks and Virtual GeoReality. In: Stefanidis, A., Nittel, S. (eds.) GeoSensor Networks, pp. 1–9. CRC Press, Boca Raton (2004)Google Scholar
  49. 49.
    Porikli, F.: Trajectory Distance Metric using Hidden Markov Model Based Representation. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 39–44. Springer, Heidelberg (2004)Google Scholar
  50. 50.
    Rhodes, B., Bomberger, N., Seibert, M., Waxman, A.: Maritime Situation Monitoring and Awareness using Learning Mechanisms. In: IEEE MILCOM 2005, pp. 646–652 (2005)Google Scholar
  51. 51.
    Srivastava, M., Muntz, R., Potkonjak, M.: Smart Kindergarten: Sensor-Based Wireless Networks for Smart Developmental Problem-Solving Environments. In: Proc. of ACM SIGMOBILE, pp. 132–138 (2001)Google Scholar
  52. 52.
    Stefanidis, A., Eickhorst, K., Agouris, P., Partsinevelos, P.: Modeling and Comparing Change using Spatiotemporal Helixes. In: Hoel, E., Rigaux, P. (eds.) ACM-GIS 2003, pp. 86–93. ACM Press, New York (2003)CrossRefGoogle Scholar
  53. 53.
    Stauffer, C., Grimson, W.E.L.: Learning Patterns of Activity using Real-Time Tracking. IEEE Trans. on Pattern Analysis & Machine Intelligence 22(8), 747–757 (2000)CrossRefGoogle Scholar
  54. 54.
    Stauffer, C., Tieu, K.: Automated Multi-Camera Planar Tracking through Correspondence Modeling. In: Proc. Computer Vision & Pattern Recognition, vol. I, pp. 259–266 (2003)Google Scholar
  55. 55.
    Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., Keogh, E.: Indexing Multi- Dimensional Time-Series with Support for Multiple Distance Measures. In: Proc. SIGKDD, pp. 216–225 (2003)Google Scholar
  56. 56.
    Vlachos, M., Meek, C., Vagena, Z., Gunopulos, D.: Identifying Similarities, Periodicities and Bursts for Online Search Queries. In: Proc. ACM SIGMOD, pp. 131–142 (2004)Google Scholar
  57. 57.
    Vranic, D., Saupe, D.: Tools for 3D Object Retrieval: Karhunen-Loeve Transform and Spherical Harmonics. In: Proc. IEEE Work. on Multimedia Signal Processing, pp. 293–298 (2001)Google Scholar
  58. 58.
    Yand, H., Sikdar, B.: A Protocol for Tracking Mobile Targets using Sensor Networks. In: IEEE Int. Workshop on Sensor Networks Protocols and Applications, pp. 71–81 (2003)Google Scholar
  59. 59.
    Ye, F., Luo, H., Cheng, J., Lu, S., Zhang, L.: A Two-Tier Data Dissemination Model for Large-scale Wireless Sensor Networks. In: MOBICOM 2002, pp. 148–159 (2002)Google Scholar
  60. 60.
    Yi, B.-K., Jagadish, H.V., Faloutsos, C.: Efficient Retrieval of Similar Time Sequences under Time Warping. In: Proc. of the ICDE, pp. 201–208 (1998)Google Scholar
  61. 61.
    Zeinalipour-Yazti, D., Lin, S., Gunopulos, D.: Distributed Spatio-Temporal Similarity Search. In: Proc. of ACM CIKM, pp. 14–23 (2006)Google Scholar
  62. 62.
    Zhang, W., Cao, G.: Optimizing Tree Reconfiguration for Mobile Target tracking in Sensor Networks. In: IEEE INFOCOM 2004, vol. 4, pp. 2434–2445 (2004)Google Scholar
  63. 63.
    Zhu, H., Su, J., Ibarra, O.H.: Trajectory Queries and Octagons in Moving Object Databases. In: Proc. of ACM CIKM, pp. 413–421 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Peggy Agouris
    • 1
  • Dimitrios Gunopulos
    • 2
  • Vana Kalogeraki
    • 2
  • Anthony Stefanidis
    • 1
  1. 1.Department of Geography and Geoinformation SciencesGeorge Mason UniversityFairfax
  2. 2.Department of Computer Science and EngineeringUniversity of California, RiversideRiverside

Personalised recommendations