Advertisement

An Asynchronous Cellular Automaton Implementing 2-State 2-Input 2-Output Reversed-Twin Reversible Elements

  • Jia Lee
  • Ferdinand Peper
  • Susumu Adachi
  • Kenichi Morita
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5191)

Abstract

Reversible computers usually work in a synchronous mode, i.e., in the presence of clock signals, but in the light of the asynchronous nature of microscopic physical phenomena this may be an anomaly. The alternative, an asynchronous mode of operation, has therefore attracted attention from researchers, witness the proposal of a reversible circuit element in (Morita 2001) that works in such a mode. Simplicity of circuit elements like this is an important design objective since it correlates positively with the efficiency by which they may be realized physically. In this paper, we present two mutually inverse logic elements that compare favorably to other circuit elements in terms of their number of states and their number of input and output lines. We show that the proposed circuit elements can perform universal computation by embedding circuits made of them in asynchronous cellular automata.

Keywords

Cellular Automaton Transition Rule Reversible Logic Circuit Element Bijective Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennett, C.: Logical reversibility of computation. IBM Journal of Research and Development 17(6), 525–532 (1973)zbMATHCrossRefGoogle Scholar
  2. 2.
    Vos, A.D., Raa, B., Storme, L.: Generating the group of reversible logic gates. Journal of Physics A: Mathematical and General 35(33), 7063–7078 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Frank, M., Vieri, C., Ammer, M., Love, N., Margolus, N., Knight Jr., T.F.: A scalable reversible computer in silicon. In: Calude, C.S., Casti, J., Dinneen, M.J. (eds.) Unconventional Models of Computation, pp. 183–200. Springer, Singapore (1998)Google Scholar
  4. 4.
    Fredkin, E., Toffoli, T.: Conservative logic. International Journal of Theoretical Physics 21(3-4), 219–253 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Margolus, N.: Physics-like models of computation. Physica D 10(1/2), 81–95 (1984)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Merkle, R.: Reversible electronic logic using switches. Nanotechnology 4(1), 21–40 (1993)CrossRefGoogle Scholar
  7. 7.
    Hauck, S.: Asynchronous design methodologies: an overview. Proc. IEEE 83(1), 69–93 (1995)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Patra, P., Fussell, D.: Conservative delay-insensitive circuits. In: Workshop on Physics and Computation (PhysComp 1996) (1996)Google Scholar
  9. 9.
    Morita, K.: A simple universal logic element and cellular automata for reversible computing. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 102–113. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Lee, J., Peper, F., Adachi, S., Mashiko, S.: On reversible computation in asynchronous systems. In: Quantum Information and Complexity, pp. 296–320. World Scientific, Singapore (2004)Google Scholar
  11. 11.
    Tanaka, K.: Universal reversible logic elements with 3 inputs, 3 outputs, and 2 states. Master Thesis, Hiroshima University (in Japanese) (2003)Google Scholar
  12. 12.
    Lee, J., Peper, F., Adachi, S., Morita, K., Mashiko, S.: Reversible computation in asynchronous cellular automata. In: Calude, C.S., Dinneen, M.J., Peper, F. (eds.) UMC 2002. LNCS, vol. 2509, pp. 220–229. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Peper, F., Isokawa, T., Kouda, N., Matsui, N.: Self-timed cellular automata and their computational ability. Future Generation Computer Systems 18(7), 893–904 (2002)zbMATHCrossRefGoogle Scholar
  14. 14.
    Mealy, G.: A method for synthesizing sequential circuits. Bell System Technical Journal 34(5), 1045–1079 (1955)MathSciNetGoogle Scholar
  15. 15.
    Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine. Trans. IEICE Japan E-72, 223–228 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jia Lee
    • 1
  • Ferdinand Peper
    • 2
  • Susumu Adachi
    • 2
  • Kenichi Morita
    • 3
  1. 1.Celartem Technology Inc.Japan
  2. 2.Nano ICT GroupNational Institute of Information and Communications TechnologyJapan
  3. 3.Dept. of Information EngineeringHiroshima UniversityJapan

Personalised recommendations