Fundamental Diagram and Validation of Crowd Models

  • Armin Seyfried
  • Andreas Schadschneider
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5191)

Abstract

In recent years, several approaches for crowd modeling have been proposed. However, so far not much attention has been paid to their quantitative validation. The fundamental diagram , i.e. the density-dependence of the flow or velocity, is probably the most important relation as it connects the basic parameter to describe the dynamic of crowds. But specifications in different handbooks as well as experimental measurements for the fundamental diagram differ considerably. We give a review of the experimental data base and the causes for the discrepancies discussed in the literature. Up to now it was neglected that the way of measurement can cause variations between the results of different studies. To shed some light on this problem we studied by means of experimental trajectories of the single file movement how different measurement methods influence the resulting fundamental diagram.

Keywords

empirical data model validation fundamental diagram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schadschneider, A., et al.: Evacuation dynamics: Empirical results, modeling and applications. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and System Science. Springer, Heidelberg (2008)Google Scholar
  2. 2.
    Predtechenskii, V.M., Milinskii, A.I.: Planing for foot traffic flow in buildings. Amerind Publishing, New Dehli (1978)Google Scholar
  3. 3.
    Fruin, J.J.: Pedestrian Planning and Design. Metropolitan Association of Urban Designers and Environmental Planners, New York (1971)Google Scholar
  4. 4.
    Nelson, H.E., Mowrer, F.W.: Emergency movement. In: Di Nenno, P.J. (ed.) SFPE Handbook of Fire Protection Engineering, 3rd edn. (2002)Google Scholar
  5. 5.
    Weidmann, U.: Transporttechnik der Fussgänger. Schriftenreihe des IVT Nr. 90, ETH Zürich (1993)Google Scholar
  6. 6.
    Older, S.J.: Traffic Engineering and Control 10, 160–163 (1968)Google Scholar
  7. 7.
    Helbing, D., et al.: Phys. Rev. E 75, 046109 (2007)Google Scholar
  8. 8.
    Pushkarev, B., Zupan, J.M.: Transportation Research Record 538, 1–15 (1975)Google Scholar
  9. 9.
    Oeding, D.: Verkehrsbelastung und Dimensionierung von Gehwegen und anderen Anlagen des Fußgängerverkehrs. Forschungsbericht 22, Technische Hochschule Braunschweig (1963)Google Scholar
  10. 10.
    Navin, P.D., Wheeler, R.J.: Traffic Engineering 39, 31–36 (1969)Google Scholar
  11. 11.
    Hankin, B.D., Wright, R.A.: Operational Research Quarterly 9, 81–88 (1958)Google Scholar
  12. 12.
    Mori, M., Tsukaguchi, H.: Transp. Res. 21A(3), 223–234 (1987)Google Scholar
  13. 13.
    Leutzbach, W.: Introduction to the Theory of Traffic Flow. Springer, Berlin (1988)Google Scholar
  14. 14.
    Kerner, B.S.: The Physics of Traffic. Springer, Berlin (2004)Google Scholar
  15. 15.
  16. 16.
    Seyfried, A., et al.: Conference proceedings PED2008. Springer, Berlin (in preparation, 2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Armin Seyfried
    • 1
  • Andreas Schadschneider
    • 2
  1. 1.Jülich Supercomputing CentreForschungszentrum JülichJülichGermany
  2. 2.Institut für Theoretische PhysikUniversität zu KölnKölnGermany

Personalised recommendations