Advertisement

Computing by Swarm Networks

  • Teijiro Isokawa
  • Ferdinand Peper
  • Masahiko Mitsui
  • Jian-Qin Liu
  • Kenichi Morita
  • Hiroshi Umeo
  • Naotake Kamiura
  • Nobuyuki Matsui
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5191)

Abstract

Though the regular and fixed structure of cellular automata greatly contributes to their simplicity, it imposes a strict limitation on the applications that can be modeled by them. This paper proposes swarm networks, a model in which cells, unlike in cellular automata, have irregular neighborhoods. Timed asynchronously, a cell in this model acts like an agent that can dynamically interact with a varying set of other cells under the control of transition rules. The configurations in which cells are organized according to their neighborhoods can move around in space, following simple mechanical laws. We prove computational universality of this model by simulating a circuit consisting of asynchronously timed circuit modules. The proposed model may find applications in nanorobotic systems and artifical biological systems.

Keywords

Cellular Automaton Cellular Automaton Transition Rule Cellular Automaton Model Output Wire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Turing, A.: On computable numbers, with an application to the entscheidungsproblem. Proc. London Math. Soc. 2(42), 230–265 (1936)Google Scholar
  2. 2.
    Church, A.: An unsolvable problem of elementary number theory. American Journal of Mathematics 58(2), 345–363 (1936)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Neumann, J.V.: Theory of Self-Reproducing Automata. University of Illinois Press, Champaign (1966)Google Scholar
  4. 4.
    Banks, E.: Universality in cellular automata. In: IEEE 11th Ann. Symp. on Switching and Automata Theory, pp. 194–215 (1970)Google Scholar
  5. 5.
    Codd, E.F.: Cellular Automata. Academic Press, Inc., Orlando (1968)zbMATHGoogle Scholar
  6. 6.
    Serizawa, T.: Three-state Neumann neighbor cellular automata capable of constructing self-reproducing machines. Syst. and Comput. in Japan 18(4), 33–40 (1987)CrossRefGoogle Scholar
  7. 7.
    Adachi, S., Peper, F., Lee, J.: Computation by asynchronously updating cellular automata. Journal of Statistical Physics 114(1/2), 261–289 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lee, J., Adachi, S., Peper, F., Morita, K.: Embedding universal delay-insensitive circuits in asynchronous cellular spaces. Fundamenta Informaticae 58(3/4), 295–320 (2003)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Lee, J., Adachi, S., Peper, F., Mashiko, S.: Delay-insensitive computation in asynchronous cellular automata. Journal of Computer and System Sciences 70(2), 201–220 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Peper, F., Lee, J., Adachi, S., Mashiko, S.: Laying out circuits on asynchronous cellular arrays: a step towards feasible nanocomputers? Nanotechnology 14(4), 469–485 (2003)CrossRefGoogle Scholar
  11. 11.
    Peper, F., Lee, J., Abo, F., Isokawa, T., Adachi, S., Matsui, N., Mashiko, S.: Fault-tolerance in nanocomputers: A cellular array approach. IEEE Trans. Nanotechnology 3(1), 187–201 (2004)CrossRefGoogle Scholar
  12. 12.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Santa Fe Institute Studies on the Sciences of Complexity. Oxford University Press, USA (1999)zbMATHGoogle Scholar
  13. 13.
    Bayindir, L., Sahin, E.: A review of studies in swarm robotics. Turk J. Elec. Engin. 15(2), 115–147 (2007)Google Scholar
  14. 14.
    Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Communications Magazine 40(8), 102–114 (2002)CrossRefGoogle Scholar
  15. 15.
    ter Beek, M., Ellis, C., Kleijn, J., Rozenberg, G.: Synchronizations in team automata for groupware systems. Comput. Supported Coop. Work 12(1), 21–69 (2003)CrossRefGoogle Scholar
  16. 16.
    Stevens, W.: Simulating self-replicating machines. Journal of Intelligent and Robotic Systems 49(2), 135–150 (2007)CrossRefGoogle Scholar
  17. 17.
    Priese, L.: Automata and Concurrency. Theoretical Computer Science 25(3), 221–265 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Krauss, G.: Biochemistry of signal transduction and regulation. Wiley-VCH, Weinheim (2008)Google Scholar
  19. 19.
    Liu, J.Q., Shimohara, K.: Biomolecular computation for bionanotechnology. Artech House, Boston (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Teijiro Isokawa
    • 1
  • Ferdinand Peper
    • 1
    • 2
  • Masahiko Mitsui
    • 1
  • Jian-Qin Liu
    • 3
  • Kenichi Morita
    • 4
  • Hiroshi Umeo
    • 5
  • Naotake Kamiura
    • 1
  • Nobuyuki Matsui
    • 1
  1. 1.Division of Computer EngineeringUniversity of HyogoJapan
  2. 2.Nano ICT GroupNational Institute of Information and Communications TechnologyJapan
  3. 3.Biological ICT GroupNational Institute of Information and Communications TechnologyJapan
  4. 4.Dept. of Information EngineeringHiroshima UniversityJapan
  5. 5.Dept. of Computer ScienceOsaka Electro-Communication UniversityJapan

Personalised recommendations