GPU Accelerated Computation and Visualization of Hexagonal Cellular Automata

  • Stéphane Gobron
  • Hervé Bonafos
  • Daniel Mestre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5191)

Abstract

We propose a graphics processor unit (GPU)-accelerated method for real-time computing and rendering cellular automata (CA) that is applied to hexagonal grids.Based on our previous work [9] –which introduced first and second dimensional cases– this paper presents a model for hexagonal grid algorithms. Proposed method is novel and it encodes and transmits large CA key-codes to the graphics card and consequently, this technique allows to visualize the CA information flow in real-time to easily identify emerging behaviors even for large data sets. To show the efficiency of our model we first present a set of characteristic hexagonal behaviors, and then describe computational statistics for central processing unit (CPU) and GPU on a set of different hardware and operating system (OS) configurations. We show that our model is flexible and very efficient as it permits to compute CA close to a thousand times faster than classical CPU methods. Additionally, free access is provided to our downloadable software for hexagonal grid CA simulations.

Keywords

Hexagonal cellular automaton GPU-accelerated computation Digital imaging Real-time rendering Emerging behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamatzky, A., Wuensche, A., De Lacy Costello, B.: Glider-based computing in reaction-diffusion hexagonal cellular automata. ScienceDirect, Chaos Solutions and Fractals 27, 287–295 (2006)MATHCrossRefGoogle Scholar
  2. 2.
    Alonso-Sanz, R., Martín, M.: A structurally dynamic cellular automaton with memory in the hexagonal tessellation. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 30–40. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Chopard, B., Lagrava, D.: A cellular automata model for species competition and evolution. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 277–286. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Hernández Encinas, L., Hoya White, S., del Rey, A.M., Rodríguez Sánchez, G.: Modelling forest of fire spread using hexagonal cellular automata. ScienceDirect, Applied Mathematical Modelling 31, 1213–1227 (2007)MATHCrossRefGoogle Scholar
  5. 5.
    Fan, Z., Qiu, F., Kaufman, A., Yoakum-Stover, S.: GPU cluster for high performance computing. In: SC 2004. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  6. 6.
    Foley, J.D., van Dam, A.F., Stephen, K., Hughes, J.F., Phillips, R.: Introduction to Computer Graphics, principles and practice, 2nd edn., 1175 pages. Addison Wesley, Reading (1993)Google Scholar
  7. 7.
    Gobron, S., Devillard, F., Heit, B.: Retina simulation using cellular automaton and GPU programming. Machine Vision and Applications Journal 66, 331–342 (2007)CrossRefGoogle Scholar
  8. 8.
    Gobron, S., Finck, D.: Generating surface textures based on cellular networks. In: The Geometric Modeling and Imaging international conference (GMAI 2006), Londres, UK, July 5-7, 2006, pp. 113–120. IEEE Computer Society Press, Los Alamitos (2006)CrossRefGoogle Scholar
  9. 9.
    Gobron, S., Mestre, D.: Information visualization of multi-dimensional cellular automata using GPU programming. In: 11th International Conference on Information Visualisation (iV 2007), Zurich, Switzerland, July 2-6, 2007, pp. 33–39. IEEE Computer Society Press, Los Alamitos (2007)CrossRefGoogle Scholar
  10. 10.
    Harding, S., Banzhaf, W.: Fast genetic programming and artificial developmental systems on GPUs. In: 21st International Symposium on High Performance Computing Systems and Applications (HPCS 2007), Saskatoon, SK, Canada. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  11. 11.
    Iovine, G., D’Ambrosio, D., Di Gregorio, S.: Applying genetic algorithms for calibrating a hexagonal cellular automata model for the simulation of debris flows characterised by strong inertia effects. Geomorphology 66, 287–303 (2005)CrossRefGoogle Scholar
  12. 12.
    Lan, Y.L., Li, D.Z., Li, Y.Y.: Modeling austenite decomposition into ferrite at different cooling rate in low-carbon stell with cellular automaton model. ScienceDirect, Acta Materalia 52, 1721–1729 (2004)CrossRefGoogle Scholar
  13. 13.
    Miyamoto, S., Sakai, H., Shiraishi, T., Morishita, S.: A flow modeling of lubricating greases under shear deformation by cellular automata. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 383–391. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Pagnutti, C., Anand, M., Azzouz, M.: Lattice geometry, gap formation and scale invariance in forests. ScienceDirect, Theoretical Biology 236, 79–87 (2005)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Rost, R.J.: OpenGL Shading Language, 2nd edn. Addison Wesley Professional, Reading (2006)Google Scholar
  16. 16.
    Shreiner, D., Woo, M., Neider, J., Davis, T.: OpenGL Programming Guide: the official Guide to learning OpenGL v2.0, 1st edn. Addison Wesley Professional, Reading (2005)Google Scholar
  17. 17.
    Stöcker, S.: Models for tuna school formation. Mathematical Biosciences 156, 167–190 (1999)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Toussaint, J.-C., Debierre, J.-M., Turban, L.: Deposition of particles in a two-dimensional lattice gas flow. Physical Review Letters 68(13) (1992)Google Scholar
  19. 19.
    Wainer, G.A.: Modeling robot path planning with cd++. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 595–604. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Wolfram, S.: A new kind of science, 1st edn. Wolfram Media Inc. (2002)Google Scholar
  21. 21.
    Wu, Y., Chen, N., Rissler, M., Jiang, Y., Kaiser, D., Alber, M.: Ca models of myxobacteria swarming. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 192–203. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Yongzhong, Z., Feng, Z.-.D., Tao, H., Liyu, W., Kegong, L., Xin, D.: Simulating wildfire spreading processes in a spatially heterogeneous landscapes using an improved cellular automaton model. In: Geoscience and Remote Sensing Symposium (IGARSS 2004). Proceedings. 2004 IEEE International, pp. 3371–3374 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Stéphane Gobron
    • 1
  • Hervé Bonafos
    • 2
  • Daniel Mestre
    • 1
  1. 1.Institute of Mouvement SciencesCNRSMarseilleFrance
  2. 2.No Affiliations 

Personalised recommendations