Contact Network Modeling of Flu Epidemics

  • Ian X. Y. Leung
  • Gareth Gibbs
  • Franco Bagnoli
  • Anil Sorathiya
  • Pietro Liò
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5191)


Using actual census, family and age structure, land-use and population-mobility data, we develop a stochastic cellular automata on a social contact network to study the propagation of influenza epidemics in the UK. In particular, we address age dependency and obtain the contact networks through the analysis of location co-presence. We analyze infection propensities as well as vaccination techniques. The results indicate the relative merits of different vaccination strategies combined with early detection without resorting to mass vaccination of a population.


Cellular Automaton Degree Distribution Vaccination Strategy Contact Network Cellular Automaton Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rvachev, L., Longini, I.: Math. Biosci. 75, 3 (1985)Google Scholar
  2. 2.
    Grenfell, B.T., et al.: Nature 414, 716 (2001)Google Scholar
  3. 3.
    Longini, I., et al.: Am. J. Epidemiol. 123, 383 (1986)Google Scholar
  4. 4.
    Meyers, L.A., et al.: J. Theor. Biol. 240, 400 (2006)Google Scholar
  5. 5.
    Hethcote, H.W.: SIAM review 42, 599 (2000)Google Scholar
  6. 6.
    Nagel, K., et al.: Int. J. Complex Systems 244 (1998)Google Scholar
  7. 7.
    Eubank, S.S., et al.: Nature 429, 180 (2004)Google Scholar
  8. 8.
    Ferguson, N.M., et al.: Nature 437, 209 (2005)Google Scholar
  9. 9.
    Epstein, J.M., et al.: Brookings Institute Center on Social and Economic Dynamics Working Paper 31 (2002)Google Scholar
  10. 10.
    Bian, L.: Environment and Planning B: Planning and Design 31, 381 (2004)Google Scholar
  11. 11.
    Brownstein, S.J., et al.: Am. J. Epi. 162, 686 (2005)Google Scholar
  12. 12.
    Hpa national influenza season summary (2007),
  13. 13.
    Bailey, N.T.J.: The Mathematical Theory of Infectious Diseases. Murray, J.D. 2nd edn. Mathematical Biology. Springer, Berlin (1993)Google Scholar
  14. 14.
    Rabenau, H.F., et al.: Med. Microbiol. Immunol. 194, 1 (2005)Google Scholar
  15. 15.
    Lowen, A.C., et al.: PLoS Pathog. 19, 1470 (2007)Google Scholar
  16. 16.
    Bureau of Transportation Statistics Highlights of the 2001 National Household Travel Survey (2003),
  17. 17.
    Eagle, N., Pentland, A.: Personal and ubiquitous computing 10, 255 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ian X. Y. Leung
    • 1
  • Gareth Gibbs
    • 1
  • Franco Bagnoli
    • 2
  • Anil Sorathiya
    • 1
  • Pietro Liò
    • 1
  1. 1.The Computer LaboratoryUniversity of CambridgeCambridgeU.K.
  2. 2.Department of EnergyUniversity of Florence, Via S. Marta 3, 50139 Firenze, Italy; also CSDC and INFN, sez. Firenze 

Personalised recommendations