Advertisement

Towards a Medical Virtual Reality Environment for Minimally Invasive Cardiac Surgery

  • Terry M. Peters
  • Cristian A. Linte
  • John Moore
  • Daniel Bainbridge
  • Douglas L. Jones
  • Gérard M. Guiraudon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5128)

Abstract

We have developed a visualization environment to assist surgeons with therapy delivery inside the beating heart, in absence of direct vision. This system employs virtual reality techniques to integrate pre-operative anatomical models, real-time intra-operative imaging, and models of magnetically-tracked surgical tools. Visualization is enhanced via 3D dynamic cardiac models constructed from high-resolution pre-operative MR or CT data and registered within the intra-operative imaging environment. In this paper, we report our experience with a feature-based registration technique to fuse the pre- and intra-operative data during an in vivo intracardiac procedure on a porcine subject. Good alignment of the pre- and intra-operative anatomy within the virtual reality environment is ensured through the registration of easily identifiable landmarks. We present our initial experience in translating this work into the operating room and employing this system to guide typical intracardiac interventions. Given its extensive capabilities in providing surgical guidance in the absence of direct vision, our virtual environment is an ideal candidate for performing off-pump intracardiac interventions.

Keywords

Minimally Invasive Surgery Off-pump Cardiac Procedures Intra-procedure Imaging Organ Modeling Virtual Augmented Reality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McVeigh, E.R., Guttman, M.A., Kellman, P., Raval, A.A., Lederman, R.J.: Real-time, interactive MRI for cardiovascular interventions. Acad Radiol 12, 1221–1227 (2005)CrossRefGoogle Scholar
  2. 2.
    Lauritsch, G., Boese, J., Wigström, L., Kemeth, H., Fahrig, R.: Towards cardiac C-arm computed tomography. IEEE Trans. Med. Imaging 25, 922–934 (2006)CrossRefGoogle Scholar
  3. 3.
    Linte, C.A., Wiles, A.D., Hill, N., Moore, J., Wedlake, C., Guiraudon, G.M., Jones, D.L., Bainbridge, D., Peters, T.M.: An augmented reality environment for image-guidance of off-pump mitral valve implantation. In: Medical Imaging 2007: Visualization and Image-Guided Procedures. Proc. of SPIE, vol. 6509 (2007) 65090N–12Google Scholar
  4. 4.
    Wiles, A.D., Guiraudon, G.M., Moore, J., Wedlake, C., Linte, C.A., Jones, D.L., Bainbridge, D., Peters, T.M.: Navigation accuracy for an intracardiac procedure using virtual reality-enhanced ultrasound. In: Medical Imaging 2007: Visualization and Image-Guided Procedures. Proc. of SPIE, vol. 6509 (2007) 61410W–10Google Scholar
  5. 5.
    Wierzbicki, M., Drangova, M., Guiraudon, G.M., Peters, T.M.: Validation of dynamic heart models obtained using non-linear registration for virtual reality training, planning, and guidance of minimally invasive cardiac surgeries. Med. Image Anal. 8, 387–401 (2004)CrossRefGoogle Scholar
  6. 6.
    Wierzbicki, M., Peters, T.M.: Determining epicardial surface motion using elastic registration: Towards virtual reality guidance of minimally-invasive cardiac interventions. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 722–729. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Gobbi, D.G., Comeau, R.M., Peters, T.M.: Ultrasound probe tracking for real-time ultrasound/MRI overlay and visualization of brain shift. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 920–927. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Linte, C.A., Wierzbicki, M., Moore, J., Guiraudon, G.M., Jones, D.L., Peters, T.M.: On enhancing planning and navigation of beating-heart mitral valve surgery using pre-operative cardiac models. In: Proc. of IEEE Eng. Med. Biol. Soc., pp. 475–478 (2007)Google Scholar
  9. 9.
    Guiraudon, G., Jones, D., Bainbridge, D., Peters, T.: Mitral valve implantation using off-pump closed beating intracardiac surgery: a feasability study. Interact Cardiovasc Thorac. Surg. 6, 603–607 (2007)CrossRefGoogle Scholar
  10. 10.
    Zhang, Q., Eagleson, R., Peters, T.M.: Rapid voxel classification methodology for interactive 3d medical image visualization. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 86–93. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Vogt, S., Khamene, A., Niemann, H., Sauer, F.: An AR system with intuitive user interface for manipulation and visualization of 3D medical data. In: Proc. of Medicine Meets Virtual Reality. Stud. Health Technol. Inform., vol. 98, pp. 397–403 (2004)Google Scholar
  12. 12.
    Birkfellner, W., Figl, M., Matula, C., Hummel, J., Hanel, R., Imhof, H., Wanschitz, F., Wagner, A., Watzinger, F., Bergmann, H.: Computer-enhanced stereoscopic vision in a head-mounted operating binocular. Phys. Med. Biol. 48, 49–57 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Terry M. Peters
    • 1
    • 2
    • 5
  • Cristian A. Linte
    • 1
    • 2
  • John Moore
    • 1
  • Daniel Bainbridge
    • 3
  • Douglas L. Jones
    • 4
    • 5
  • Gérard M. Guiraudon
    • 1
    • 5
  1. 1.Imaging Research LaboratoriesRobarts Research Institute 
  2. 2.Biomedical Engineering Graduate ProgramUniversity of Western Ontario 
  3. 3.Division of AnaesthesiaUniversity of Western Ontario 
  4. 4.Department of Physiology & PharmacologyUniversity of Western Ontario 
  5. 5.Canadian Surgical Technologies and Advanced RoboticsLondonCanada

Personalised recommendations