In a seminal paper Montanari and Meseguer showed that an algebraic interpretation of Petri nets in terms of commutative monoids can be used to provide an elegant characterisation of the deterministic computations of a net, accounting for their sequential and parallel composition. Here we show that, along the same lines, by adding an (idempotent) operation and thus taking dioids (commutative semirings) rather than monoids, one can faithfully characterise the non-deterministic computations of a Petri net.


Monoidal Category Parallel Composition Deterministic Process Concatenable Process Deterministic Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bruni, R., Gadducci, F., Montanari, U.: Normal forms for algebras of connections. Theor. Comp. Sci. 286(2), 247–292 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Degano, P., Meseguer, J., Montanari, U.: Axiomatizing the algebra of net computations and processes. Acta Informatica 33(7), 641–667 (1996)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Engelfriet, J.: Branching processes of Petri nets. Acta Informatica 28(6), 575–591 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gadducci, F., Montanari, U.: Axioms for contextual net processes. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 296–308. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Goltz, U., Reisig, W.: The non-sequential behaviour of Petri nets. Information and Control 57(2/3), 125–147 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Green, A., Altenkirch, T.: From reversible to irreversible computations. In: Workshop on Quantum Programming Languages. Electronic Notes in Theoretical Compuer Science. Elsevier, Amsterdam (2006)Google Scholar
  7. 7.
    Laplaza, M.: Coherence for distributivity. In: Coherence in Categories. Lecture Notes in Mathematics, vol. 281, pp. 29–72. Springer, Heidelberg (1972)CrossRefGoogle Scholar
  8. 8.
    Lane, S.M.: Categories for the Working Mathematician. Springer, Heidelberg (1971)zbMATHGoogle Scholar
  9. 9.
    Martì-Oliet, N., Meseguer, J.: From Petri nets to linear logic through categories: A survey. Intl. Journal of Foundations of Computer Science 2(4), 297–399 (1991)zbMATHCrossRefGoogle Scholar
  10. 10.
    Meseguer, J., Montanari, U.: Petri nets are monoids. Information and Computation 88(2), 105–155 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Institut für Instrumentelle Matematik, Bonn (1962)Google Scholar
  12. 12.
    Reisig, W.: Petri Nets: An Introduction. EACTS Monographs on Theoretical Computer Science. Springer, Heidelberg (1985)zbMATHGoogle Scholar
  13. 13.
    Sassone, V.: An axiomatization of the algebra of Petri net concatenable processes. Theor. Comp. Sci. 170(1-2), 277–296 (1996)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Sassone, V.: An axiomatization of the category of Petri net computations. Mathematical Structures in Computer Science 8(2), 117–151 (1998)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Paolo Baldan
    • 1
  • Fabio Gadducci
    • 2
  1. 1.Dipartimento di Matematica Pura e ApplicataUniversità PadovaPadovaItalia
  2. 2.Dipartimento di InformaticaUniversità di Pisa, Polo “Guglielmo Marconi”La SpeziaItalia

Personalised recommendations