Advertisement

Digital Terrain Modeling and Glacier Topographic Characterization

  • Duncan J. Quincey
  • Michael P. Bishop
  • Andreas Kääb
  • Etienne Berthier
  • Boris Flach
  • Tobias Bolch
  • Manfred Buchroithner
  • Ulrich Kamp
  • Siri Jodha Singh Khalsa
  • Thierry Toutin
  • Umesh K. Haritashya
  • Adina Racoviteanu
  • John F. Shroder
  • Bruce H. Raup
Chapter
Part of the Springer Praxis Books book series (PRAXIS)

Abstract

The Earth’s topography results from dynamic interactions involving climate, tectonics, and surface processes. In this chapter our main interest is in describing and illustrating how satellite-derived DEMs (and other DEMs) can be used to derive information about glacier dynamical changes. Along with other data that document changes in glacier area, these approaches can provide useful measurements of, or constraints on glacier volume balance and—with a little more uncertainty related to the density of lost or gained volume—mass balance. Topics covered include: basics on DEM generation using stereo image data (whether airborne or spaceborne), the use of ground control points and available software packages, postprocessing, and DEM dataset fusion; DEM uncertainties and errors, including random errors and biases; various glacier applications including derivation of relevant geomorphometric parameters and modeling of topographic controls on radiation fields; and the important matters of glacier mapping, elevation change, and mass balance assessment. Altimetric data are increasingly important in glacier studies, yet challenges remain with availability of high-quality data, the current lack of standardization for methods for requiring, processing, and representing digital elevation data, and the identification and quantification of DEM error and uncertainty.

Keywords

Global Navigation Satellite System Global Navigation Satellite System Digital Terrain Modeling Digital Elevation Model Glacier Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Quincey was funded by a Research Council U.K. Fellowship; Bishop was funded by the National Aeronautics and Space Administration under the NASA OES-02 program (Award NNG04GL84G). ASTER data courtesy of NASA/GSFC/METI/Japan Space Systems, the U.S./Japan ASTER Science Team, and the GLIMS project.

References

  1. Allen, T.R. (1998) Topographic context of glaciers and perennial snowfields, Glacier National Park, Montana. Geomorphology, 21, 207-216.Google Scholar
  2. Arendt, A., Echelmeyer, K., Harrison, W.D., Lingle, G., and Valentine, V. (2002) Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science, 297, 382-386.Google Scholar
  3. Arendt, A.A., Echelmeyer, K., Harrison, W., Lingle, C., Zirnheld, S., Valentine, V., Ritchie, B. and Drucken- miller, M. (2006) Updated estimates of glacier volume changes in the western Chugach Mountains, Alaska, and a comparison of regional extrapolation methods. Journal of Geophysical Research, 111, F03019.Google Scholar
  4. Arnold, N.S., Rees, W.G., Hodson, A.J., and Kohler, J. (2006a) Topographic controls on the surface energy balance of a high Arctic valley glacier. Journal of Geophysical Research, 111, F02011.Google Scholar
  5. Arnold, N.S., Rees, W.G., Devereux, B.J., and Amable, G.S. (2006b) Evaluating the potential of high- resolution airborne LiDAR data in glaciology. International Journal of Remote Sensing, 27(6), 1233-1251.Google Scholar
  6. Baltsavias, E.P. (1999) A comparison between photo- grammetry and laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 54, 83-94. Google Scholar
  7. Bamber, J.L., and Payne, A.J. (2004) Mass Balance of the Cryosphere: Observations and Modelling ofContempor- ary and Future Changes. Cambridge University Press, Cambridge, U.K.Google Scholar
  8. Bamber, J.L., and Rivera, A. (2007) A review of remote sensing methods for glacier mass balance determination. Global and Planetary Change, 59, 138-148.Google Scholar
  9. Barry, R.G. (2006) The status of research on glaciers and global glacier recession: A review. Progress in Physical Geography, 30(3), 285-306.Google Scholar
  10. Benz, U.C., Hofmann, P., Willhauck, G., Lingenfelder, I., and Heynen, M. (2003) Multi-resolution, object- oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogram- metry and Remote Sensing, 58(3/4), 239-258.Google Scholar
  11. Berthier, E., and Toutin, T. (2008) SPOT5-HRS digital elevation models and the monitoring of glacier elevation changes in North-West Canada and South-East Alaska. Remote Sensing of Environment, 112, 2443-2454.Google Scholar
  12. Berthier, E., Arnaud, Y., Vincent, C., and Remy, F. (2006) Biases of SRTM in high-mountain areas: Implications for the monitoring of glacier volume changes. Geophysical Research Letters, 33, L08502.Google Scholar
  13. Berthier, E., Arnaud, Y., Rajesh, K., Sarfaraz, A., Wagnon, P., and Chevallier, P. (2007) Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sensing of Environment, 108(3), 327-338.Google Scholar
  14. Berthier, E., Schiefer, E., Clarke, G.K., Menounos, B., and Remy, F. (2010) Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery. Nature Geosci., 3, 92-95.Google Scholar
  15. Binaghi, E., Madella, P., Montesano, M.G., and Rampini, A. (1997) Fuzzy contextual classification of multisource remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 35 (2), 326-340. Google Scholar
  16. Bishop, M.P. and Shroder, J.F., Jr. (2000) Remote sensing and geomorphometric assessment of topographic complexity and erosion dynamics in the Nanga Parbat massif. Geological Society, London, Special Publications, 170, 181-200.Google Scholar
  17. Bishop, M.P., Shroder, J.F., Jr., Hickman, B.L., and Copland, L. (1998) Scale dependent analysis of satellite imagery for characterization of glacier surfaces in the Karakoram Himalaya. Geomorphology, 21, 217-232.Google Scholar
  18. Bishop, M.P., Bonk, R., Kamp, U., and Shroder, J.F., Jr. (2001) Terrain analysis and data modelling for alpine glacier mapping. Polar Geography, 25(3) 182-201.Google Scholar
  19. Bishop, M.P., Shroder, J.F., Jr., and Colby, J.D. (2003) Remote sensing and geomorphometry for studying relief production in high mountains. Geomorphology, 55, 345-361.Google Scholar
  20. Bishop, M.P., Barry, R.G., Bush, A.B.G., Copland, L., Dwyer, J.L., Fountain, A.G., Haeberli, W., Hall, D.K., Kääb, A., Kargel, J.S. et al. (2004) Global land-ice measurements from space (GLIMS): Remote sensing and GIS investigations of the Earth’s cryo- sphere. Geocarto International, 19(2), 57-84.Google Scholar
  21. Bolch, T. (2004) Using ASTER and SRTM DEMs for studying glaciers and rockglaciers in northern Tien Shan. Paper presented at Proceedings of Theoretical and Applied Problems of Geography on a Boundary of Centuries, Almaty, Kazakhstan, June 8-9, 2004, Part I, pp. 254-258.Google Scholar
  22. Bolch, T., and Kamp, U. (2006) Glacier mapping in high mountains using DEMs, Landsat and ASTER data. Paper presented at Proceedings Eighth International Symposium on High Mountain Remote Sensing Cartography, March 20-27, 2005, La Paz, Bolivia (Grazer Schriften der Geographie und Raumforschung, 41), Institut fur Geographie und Raumforschung, Univer- sitat Graz, Austria, pp. 13-24.Google Scholar
  23. Bolch, T., and Schroder, H. (2001) Geomorphologische Kartierung und Diversitätsbestimmung der Periglazial- formen am Cerro Sillajhuay (Chile/Bolivien) (Erlanger Geographische Arbeiten, Sonderband 28), Institut fur Geographie, Universität Erlangen, Germany, 141 pp. [in German].Google Scholar
  24. Bolch, T., Kamp, U., and Olsenholler, J. (2005) Using ASTER and SRTM DEMs for studying geomorphol- ogy and glaciers in high mountain areas. In: M. Oluic (Ed.), New Strategies for European Remote Sensing: Proceedings 24th Annual Symposium EARSeL, May 25-27, 2004, Dubrovnik, Croatia, Millpress, Rotterdam, The Netherlands, pp. 119-127.Google Scholar
  25. Bolch, T., Buchroithner, M., Kunert, A., and Kamp, U. (2007) Automated delineation of debris-covered glaciers based on ASTER data. Paper presented at Geoinformation in Europe: Proceedings of 27th EARSeL Symposium, June 4-7, 2007, Bolzano, Italy, pp. 403-410.Google Scholar
  26. Bolch, T., Buchroithner, M., Pieczonka, T., and Kunert, A. (2008) Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data. Journal of Glaciology, 54(187), 592-600.Google Scholar
  27. Braithwaite, R.J. and Raper, S.C.B. (2010) Estimating equilibrium-line altitude (ELA) from glacier inventory data. Annals of Glaciology, 50(53), 127-132.Google Scholar
  28. Brock, B., Willis, I.C., Sharp, M.J., and Arnold, N.S. (2000) Modelling seasonal and spatial variations in the surface energy balance of Haut Glacier d’Arolla, Switzerland. Annals of Glaciology, 31, 53-62.Google Scholar
  29. Buchroithner, M., and Bolch, T. (2007) An automated method to delineate the ice extension of the debris- covered glaciers at Mt. Everest based on ASTER imagery. Paper presented at Proceedings Ninth International Symposium on High Mountain Remote Sensing Cartography (Grazer Schriften der Geographie und Raumforschung, 43), Institut fur Geographie und Raumforschung, Universität Graz, Austria, pp. 71-78.Google Scholar
  30. Burrough, P.A., and McDonnell, R.A. (1998) Principles of Geographic Information Systems. Oxford University Press, Oxford, U.K.Google Scholar
  31. Carabajal, C.C., and Harding, D.J. (2005) ICESat validation of SRTM C-band digital elevation models. Geophysical Research Letters, 32, L22S01.Google Scholar
  32. Carlisle, B.H. (2005) Modelling the spatial distribution of DEM error. Transactions in GIS, 9(4), 521-540.Google Scholar
  33. Carr, S., and Coleman, C. (2007) An improved technique for the reconstruction of former glacier mass-balance and dynamics. Geomorphology, 92, 76-90.Google Scholar
  34. Cogley, J.G., and Jung-Rothenhausler, F. (2004). Uncertainty in digital elevation models of Axel Heiber Island, Arctic Canada. Arctic, Antarctic and Alpine Research, 36, 249-260.Google Scholar
  35. Copland, L., Pope, S., Bishop, M.P., Shroder, J.F., Jr., Clendon, P., Bush, A., Kamp, U., Seong, Y.B., and Owen, L.A. (2009) Glacier velocities across the central Karakoram. Annals of Glaciology, 50(52) 41-49.Google Scholar
  36. Crippen, R.E. (2010) Global topographical exploration and analysis with the SRTM and ASTER elevation models. Geological Society Special Publications, 345, 5-15.Google Scholar
  37. Cuartero, A., Felicisimo, A.M., and Ariza, F.J. (2004) Accuracy of DEM generation from TERRA-ASTER stereo data. International Archives of Photogrammetry and Remote Sensing, 35(B2), 559-563.Google Scholar
  38. de Jong, S.M., and Burrough, P.A. (1995) A fractal approach to the classification of Mediterranean vegetation types in remotely sensed images. Photogrammetric Engineering and Remote Sensing, 61, 1041-1053.Google Scholar
  39. Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977) Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological), 39(1), 1-38.Google Scholar
  40. Drăgut L., Eisank, C., Strasser, T., and Blaschke, T. (2009) A comparison of methods to incorporate scale in geomorphometry. Paper presented at Proceedings of Geomorphometry 2009, Zurich, Switzerland, August 31-September 2, pp. 133-139. Google Scholar
  41. Dyurgerov, M.B., and Meier, M.F. (2000) Twentieth century climate change: Evidence from small glaciers. Proceedings of the National Academy of Science, 97(4), 1406-1411.Google Scholar
  42. Eckert, S., Kellenberger, T., and Itten, K. (2005) Accuracy assessment of automatically derived digital elevation models from ASTER data in mountainous terrain. International Journal of Remote Sensing, 26(9), 1943-1957.Google Scholar
  43. Egholm, D.L., Nielsen, S.B., Pedersen V.K., and Lesemann, J.-E. (2009) Glacial effects limiting mountain height. Nature, 460, 884-887.Google Scholar
  44. Eldhuset, K., Andersen, P.H., Hauge, S., Isaksson, E., and Weydahl, D.J. (2003) ERS tandem InSAR processing for DEM generation, glacier motion estimation and coherence analysis on Svalbard. International Journal of Remote Sensing, 24(7), 1415-1437.Google Scholar
  45. Etzelmüller, B., and Bjornssön, H. (2000) Map analysis techniques for glaciological applications. International Journal of Geographical Information Science, 14, 567-581.Google Scholar
  46. Favey, E., Geiger, A., Gudmundsson, G.H., and Wehr, A. (1999) Evaluating the potential of an airborne laser- scanning system for measuring volume changes of glaciers. Geografiska Annaler, 81A, 555-561.Google Scholar
  47. Fisher, P.F., and Tate, N.J. (2006) Causes and consequences of error in digital elevation models. Progress in Physical Geography, 30(4), 467-489.Google Scholar
  48. Flach, B., Kask, E., Schlesinger, D., and Skulish, A. (2002) Unifying registration and segmentation for multi-sensor images. In: L. Van Gool (Ed.), Pattern Recognition (Lecture Notes in Computer Science, 2449), Springer-Verlag, Berlin, pp. 190-197.Google Scholar
  49. Furbish, D.J., and Andrews, J.T. (1984) The use of hyp- sometry to indicate long-term stability and response of valley glaciers to changes in mass transfer. Journal of Glaciology, 30(105), 199-211.Google Scholar
  50. Gardelle, J., Arnaud, Y., and Berthier, E. (2011) Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. Global Planet. Change, 75, 47-55.Google Scholar
  51. Gardner, A.S., Moholdt, G., Cogley, J.G., Wouters, B., Arendt, A.A., Wahr, J., Berthier, E., Hock, R., Pfeffer, W.T., Kaser, G. et al. (2013) A reconciled estimate of glacier contribuions to sea-level rise: 2003 to 2009. Science, 340, 852-857.Google Scholar
  52. Geman, D., Geman, S., Graffigne, C., and Dong, P. (1990) Boundary detection by constrained optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 609-628.Google Scholar
  53. Georgopoulos, A., and Skarlatos, D. (2003) A novel method for automating the checking and correction of digital elevation models using orthophotographs. The Photogrammetric Record, 18(102), 156-163.Google Scholar
  54. Gonçalves, J.A., and Oliveira, A.M. (2004) Accuracy analysis of DEMs derived from ASTER imagery. International Archives of Photogrammetry and Remote Sensing, 35, 168-172.Google Scholar
  55. Goodchild, M.F., and Mark, D.M. (1987) The fractal nature of geographic phenomena. Annals of the Association of American Geographers, 77(2), 265-278.Google Scholar
  56. Gratton, D.J., Howarth, P.J., and Marceau, D.J. (1990) Combining DEM parameters with Landsat MSS and TM imagery in a GIS for mountain glacier characterization. IEEE Transactions on Geosciences and Remote Sensing, 28, 766-769.Google Scholar
  57. Haeberli, W., Barry, R., and Cihlar, J. (2000) Glacier monitoring within the Global Climate Observing System. Annals of Glaciology, 31, 241-246.Google Scholar
  58. Hagg, W., Braun, L., Uvarov, V.N., and Makarevich, K.G. (2004) A comparison of three methods of mass balance determination in the Tuyuksu Glacier Region, Tien Shan. Journal of Glaciology, 50(171), 505-510.Google Scholar
  59. Heitzinger, D. and Kager, H. (1999) Hochwertige Ge-ländemodelle aus Höhenlinien durch wissensbasierte Klassifikation von Problemgebieten. Photogrammetrie Fernerkundung Geoinformation, 1, 29-40 [in German].Google Scholar
  60. Hirano, A., Welch, R., and Lang, H. (2003) Mapping from ASTER stereo image data: DEM validation and accuracy assessment. ISPRS Journal of Photo- grammetry and Remote Sensing, 57(5/6), 356-370.Google Scholar
  61. Hock, R. (2005) Glacier melt: A review of processes and their modeling. Progress in Physical Geography, 29(3), 362-391.Google Scholar
  62. Honikel, M. (2002) Fusion of spaceborne stereo-optical and interferometric SAR data for digital terrain model generation. Mitteilungen des Institutes für Geodasie und Photogrammetrie, 76. Google Scholar
  63. Huggel, C., Kääb, A., Haeberli, W., Teysseire, P., and Paul, F. (2002) Remote sensing based assessment of hazards from glacier lake outbursts: A case study in the Swiss Alps. Canadian Geotechnical Journal, 39(2), 316-330.Google Scholar
  64. Kääb, A. (2000) Photogrammetric reconstruction of glacier mass balance using a kinematic ice-flow model: A 20 year time series on Grubengletscher, Swiss Alps. Annals of Glaciology, 31, 45-52.Google Scholar
  65. Kääb, A. (2002) Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: Examples using digital aerial imagery and ASTER data. ISPRS Journal of Photogrammetry and Remote Sensing, 57, 39-52.Google Scholar
  66. Kääb, A. (2005a) Remote Sensing of Mountain Glaciers and Permafrost Creep (Schriftenreihe Physische Geo- graphie, 48), University of Zurich, Switzerland, 266 pp.Google Scholar
  67. Kääb, A. (2005b) Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote Sensing of Environment, 94(4), 463-474.Google Scholar
  68. Kääb A. (2008) Glacier volume changes using ASTER satellite stereo and ICESat GLAS laser altimetry: A test study on Edgeaya, Eastern Svalbard. IEEE Transactions on Geoscience and Remote Sensing, 46(10), 2823-2830.Google Scholar
  69. Kääb, A., and Funk, M. (1999) Modelling mass balance using photogrammetric and geophysical data: A pilot study at Griesgletscher, Swiss Alps. Journal of Glaciology, 45, 575-583.Google Scholar
  70. Kääb, A., Haeberli, W., and GuSmundsson, G.H. (1997) Analysing the creep of mountain permafrost using high precision aerial photogrammetry: 25 years of monitoring Gruben rock glacier, Swiss Alps. Permafrost and Periglacial Processes, 8, 409-426.Google Scholar
  71. Kääb, A., Huggel, C., Fischer, L., Guex, S., Paul, F., Roer, I., Salzmann, N., Schlaefli, S., Schmutz, K., Schneider, D. et al. (2005) Remote sensing of glacier- and permafrost related hazards in high mountains: An overview. Natural Hazards and Earth System Science, 5(4), 527-554.Google Scholar
  72. Kamp, U., Bolch, T., and Olsenholler, J. (2005) Geomor- phometry of Cerro Sillajhuay (Andes, Chile/Bolivia): Comparison of digital elevation models (DEMs) from ASTER remote sensing data and contour maps. Geo- carto International, 20, 23-34.Google Scholar
  73. Kargel, J.S., Abrams, M.J., Bishop, M.P., Bush, A., Hamilton, G., Jiskoot, H., Kääb, A., Kieffer, H.H., Lee, E.M., Paul, F. et al. (2005) Multispectral imaging contributions to global land ice measurements from space. Remote Sensing of the Environment, 99, 187-219.Google Scholar
  74. Kargel, J.S., Leonard, G., Crippen, R.E., Delaney, K.B., Evans, S.G., and Schneider J. (2010) Satellite monitoring of Pakistan’s rockslide-dammed Lake Gojal. EOS Trans. Am. Geophys. Union, 91(43), doi: 10.1029/ 2010E0430002.Google Scholar
  75. Kargel, J., Furfaro, R., Kaser, G., Leonard, G., Fink, W., Huggel, C., Kääb, A., Raup, B., Reynolds, J., Wolfe, D. et al. (2011) ASTER imaging and analysis of glacier hazards. In: B. Ramachandran, C.O. Justice, and M.J. Abrams (Eds.), Land Remote Sensing and Global Environmental Change: NASA’s Earth Observing System and the Science of Terra and Aqua, Springer-Verlag, New York, pp. 325-373.Google Scholar
  76. Kargel., J.S., Alho, P., Buytaert, W., Celleri, R., Cogley, J.G., Dussaillant, A., Zambrano, G., Haeberli, W., Harrison, S., Leonard, G. et al. (2012) Glaciers in Patagonia: Controversy and prospects. EOS Trans. Am. Geophys. Union, 93, 212-213.Google Scholar
  77. Kaser, G. (2001) Glacier-climate interaction at low latitudes. Journal of Glaciology, 47, 195-204.Google Scholar
  78. Katsube, K., and Oguchi, T. (1999) Altitudinal changes in slope angle and profile curvature in the Japan Alps: A hypothesis regarding a characteristic slope angle. Geographic Review of Japan, 72B, 63-72.Google Scholar
  79. Khalsa, S.J.S., Dyurgerov, M.B., Khromova, T., Raup, B.H., and Barry, R.G. (2004). Space-based mapping of glacier changes using ASTER and GIS tools. IEEE Transactions on Geoscience and Remote Sensing, 42(10), 2177-2183.Google Scholar
  80. Kubik, K., and Botman, A.G. (1976) Interpolation accuracy for topographic and geological surfaces. ITC Journal, 2, 236-274.Google Scholar
  81. Kyriakidis, P.C., Shortridge, A.M., and Goodchild, M.F. (1999) Geostatistics for conflation and accuracy assessment of digital elevation models. International Journal of Geographical Information Science, 13, 677-707.Google Scholar
  82. Larsen, C.F., Motyka, R.J., Arendt, A.A., Echelmeyer, K.A., and Geissler, P.E. (2007) Glacier changes in southeast Alaska and northwest British Columbia and contribution to sea level rise. Journal of Geophysical Research, 112, F01007.Google Scholar
  83. Lathrop, R.G., and Peterson, D.L. (1992) Identifying structural self-similarity in mountainous landscapes. Landscape Ecology, 6 (4), 233-238. Google Scholar
  84. Leica Helava (2004) ERDAS Imagine Version 8.7 and Leica Photogrammetry Suite (LPS) User Guide, Leica Helava, London.Google Scholar
  85. Leonard, K.C. and Fountain, A.G. (2003) Map-based methods for estimating glacier equilibrium line altitudes. Journal of Glaciology, 49(166), 329-336.Google Scholar
  86. Li, D., Wang, S., and Li, R. (1996) Automatic quality diagnosis in DTM generation by digital image matching techniques. Geomatica, 50(1), 65-73.Google Scholar
  87. Li, Z., Zhu, Q., and Gold, C. (2005) Digital Terrain Modeling: Principles and Methodology, CRC Press, Boca Raton, FL.Google Scholar
  88. Luckman, A., Quincey, D.J., and Bevan, S. (2007) The potential of satellite radar interferometry and feature tracking for monitoring flow rates of Himalayan glaciers. Remote Sensing of Environment, 111, 172-181.Google Scholar
  89. MacGregor, K.R., Anderson, R.S., Anderson, S.P., and Waddington, E.D. (2000) Numerical simulations of glacial-valley longitudinal profile evolution. Geology, 28, 1031-1034.Google Scholar
  90. Meier, M.F. (1984) Contribution of small glaciers to global sea level. Science, 226, 1418-1421.Google Scholar
  91. Meier, M.F., Dyurgerov, M.B., and McCabe, G.J. (2003) The health of glaciers: Recent changes in glacier regime. Climatic Change, 59, 123-135.Google Scholar
  92. Mennis, J.L., and Fountain, A.G. (2001) A spatio- temporal GIS database for monitoring alpine glacier change. Photogrammetric Engineering and Remote Sensing, 67, 967-975.Google Scholar
  93. Miller, M.M., and Pelto, M.S. (2003) Mass balance measurements on the Lemon Creek Glacier, Juneau Icefield, Alaska 1953-1998. Geografiska Annaler: Series A, Physical Geography, 81(4), 671-681.Google Scholar
  94. Mitasova, H., and Mitas, L. (1993) Interpolation by regularized spline with tension, I: Theory and Implementation. Mathematical Geology, 25, 641-655.Google Scholar
  95. Möller, M., Schneider, C., and Kilian, R. (2007) Glacier change and climate forcing in recent decades at Gran Campo Nevado, southernmost Patagonia. Annals of Glaciology, 46, 136-144.Google Scholar
  96. Molnar, P., and England, P. (1990) Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg? Nature, 346, 29-34.Google Scholar
  97. Muskett, R.R., Lingle, C.S., Tangborn, W.V., and Rabus, B.T. (2003) Multi-decadal elevation changes on Bagley Ice Valley and Malaspina Glacier, Alaska. Geophysical Research Letters, 30(16), 1857.Google Scholar
  98. Nuth, C., and Kääb, A. (2011) Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. The Cryosphere, 5, 271-290.Google Scholar
  99. Oksanen, J., and Sarjakoski, T. (2005) Error propagation of DEM-based surface derivatives. Computers and Geosciences, 31, 1015-1027.Google Scholar
  100. Østrem, G., and Haakensen, N. (1999) Map comparison or traditional mass-balance measurements: Which method is better? Geografiska Annaler, 81A(4), 703-711.Google Scholar
  101. Paul, F., Kääb, A, Maisch, M., Kellenberger, T., and Haeberli, W. (2004a) Rapid disintegration of Alpine glaciers observed with satellite data. Geophysical Research Letters, 31, L21402.Google Scholar
  102. Paul, F., Huggel, C., and Kääb, A. (2004b) Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sensing of Environment, 89, 510-518.Google Scholar
  103. Peng, X., Wang, J., and Zhang, Q. (2005) Deriving terrain and textural information from stereo RADARSAT data for mountainous land cover mapping. International Journal of Remote Sensing, 26(22), 5029-5049.Google Scholar
  104. Quincey, D.J., Richardson, S.D., Luckman, A., Lucas, R.M., Reynolds, J.M., Hambrey, M.J., and Glasser, N.F. (2007) Early recognition of glacial lake hazards in the Himalaya using remote sensing datasets. Global and Planetary Change, 56, 137-152.Google Scholar
  105. Quincey, D.J., Luckman, A., and Benn, D. (2009) Quantification of Everest-region glacier velocities between 1992 and 2002, using satellite radar interferometry and feature tracking. Journal of Glaciology, 55, 596-606.Google Scholar
  106. Rabatel, A., Dedieu, J.P., and Vincent, C. (2005) Using remote-sensing data to determine equilibrium-line altitude and mass-balance time series: Validation on three French glaciers, 1994-2002. Journal of Glaciology, 51(175), 539-546.Google Scholar
  107. Rabus, B., Eineder, M., Roth, A., and Bamler, R. (2003) The shuttle radar topography mission: A new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of Photogrammetry and Remote Sensing, 57, 241-262.Google Scholar
  108. Racoviteanu, A.E., Manley, W.F., Arnaud, Y., and Williams, M.W. (2007) Evaluating digital elevation models for glaciologic applications: An example from Nevado Coropuna, Peruvian Andes. Global and Planetary Change, 59, 110-125.Google Scholar
  109. Ranzi, R., Grossi, G., Iacovelli, L., and Taschner, S. (2004) Use of multispectral ASTER images for mapping debris-covered glaciers within the GLIMS Project. Paper presented at IEEE International Geoscience and Remote Sensing Symposium, Vol. II, pp. 1144-1147.Google Scholar
  110. Rasemann, S., Schmidt, J., Schrott, L., and Dikau, R. (2004) Geomorphometry in mountain terrain. In: M. Bishop and J.F. Shroder (Eds.), Geographic Information Science and Mountain Geomorpology, Springer- Verlag, Berlin, pp. 101-137.Google Scholar
  111. Raup, B., Kääb, A., Kargel, J.S., Bishop, M.P., Hamilton, G., Lee, E.M., Paul, F., Rau, F., Soltesz, D., Khalsa, S.J. et al. (2007) Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) Project. Computers and Geosciences, 33, 104-125.Google Scholar
  112. Rees, W.G., and Arnold, N.S. (2007) Mass balance and dynamics of a valley glacier measured by high- resolution LiDAR. Polar Record, 43, 311-319.Google Scholar
  113. Reiners, P.W., Ehlers, T.A., Mitchell, S.G., and Montgomery, D.R. (2003) Coupled spatial variations in precipitation and long-term erosion rates across the Washington Cascades. Nature, 426, 645-647.Google Scholar
  114. Rickenbacher, M. (1998) Die digitale Modellierung des Hochgebirges im DGM25 des Bundesamtes fuer Landestopographie. Wiener Schriften zur Geographie und Kartographie, 11, 49-55 [in German].Google Scholar
  115. Rignot, E., Echelmeyer, K., and Krabill, W. (2001) Penetration depth of interferometric synthetic-aperture radar signals in snow and ice. Geophysical Research Letters, 28(18), 3501-3504.Google Scholar
  116. Rignot, E., Rivera, A., and Casassa, G. (2003) Contribution of the Patagonia Icefields of South America to Sea Level Rise. Science, 302(5644), 434-437.Google Scholar
  117. Rivera, A., Bown, F., Casassa, G., Acufia, C., and Clavero, J. (2005) Glacier shrinkage and negative mass balance in the Chilean Lake District (40S). Hydrologi- cal Sciences Journal, 50(6), 963-974.Google Scholar
  118. Rivera, A., Benham, T., Casassa, G., Bamber, J., and Dowdeswell, J.A. (2007) Ice elevation and areal changes of glaciers from the Northern Patagonia Icefield, Chile. Global and Planetary Change, 59(1/4), 126-137.Google Scholar
  119. Roe, G.H., Montgomery, D.R., and Hallet, B. (2002) Effects of orographic precipitation variations on the concavity of steady-state river profiles. Geology, 30, 143-146.Google Scholar
  120. Sauber, J., Molnia, B., Carabajal, C., Luthcke, S., and Muskett, R. (2005) Ice elevations and surface change on the Malaspina Glacier, Alaska. Geophysical Research Letters, 32, L23S01.Google Scholar
  121. Scharroo, R., and Visser, P. N. A. M. (1998) Precise orbit determination and gravity field improvement for the ERS satellites. Journal of Geophysical Research, 103, 8113-8127.Google Scholar
  122. Schiefer, E., Menounos, B., and Wheate, R. (2007) Recent volume loss of British Columbian glaciers, Canada. Geophysical Research Letters, 34, L16503.Google Scholar
  123. Schlesinger, M. (1968) The interaction of learning and self-organization in pattern recognition. Cybernetics and Systems Analysis, 4(2), 66-71.Google Scholar
  124. Schneevoigt, N.J. and Schrott, L. (2006) Linking geo- morphic systems theory and remote sensing: A conceptual approach to Alpine landform detection (Reintal, Bavarian Alps, Germany). Geographica Helvetica, 3, 181-190.Google Scholar
  125. Schneevoigt, N.J., van der Linden, S., Thamm, H.-P., and Schrott, L. (2008) Detecting Alpine landforms from remotely sensed imagery: A pilot study in the Bavarian Alps. Geomorphology, 93, 104-119.Google Scholar
  126. Schneider, K. (1998) Geomorphologisch plausible Rekonstruktion der digitalen Representation von Geländeoberflachen aus Höhendaten. Unpublished PhD thesis, University of Zurich, Switzerland, 226 pp. [in German].Google Scholar
  127. Smith, M.J., and Pain, C.F. (2009) Applications of remote sensing in geomorphology. Progress in Physical Geography, 33(4), 568-582.Google Scholar
  128. Stearns, L.A., and Hamilton, G.S. (2007) Rapid volume loss from two East Greenland outlet glaciers quantified using repeat stereo satellite imagery. Geophysical Research Letters, 34, L05503.Google Scholar
  129. Surazakov, A.B., and Aizen, V.B. (2006) Estimating volume change of mountain glaciers using SRTM and map-based topographic data. IEEE Transactions on Geoscience and Remote Sensing, 44(10), 2991-2995.Google Scholar
  130. Surazakov, A.B., Aizen, V.B., Aizen, E.M., and Nikitin, S.A. (2007) Glacier changes in the Siberian Altai Mountains, Ob river basin, (1952-2006) estimated with high resolution imagery. Environmental Research Letters, 2, 045017.Google Scholar
  131. Tachikawa, T., Kaku, M., Iwasaki, A., Gesch, D., Oimoen, M., Zhang, Z., Danielson, J., Krieger, T., Curtis, B., Haase, J. et al. (2011) ASTER Global Digital Elevation Model Version 2: Summary of Validation Results. Available at http://www.ersdac.or.jp/GDEM/ ver2Validation/Summary_GDEM2_validation_report_ final.pdf
  132. Tangborn, W. (1999) A mass balance model that uses low-altitude meteorological observations and the area-altitude distribution of a glacier. Geografiska Annaler, Series A, Physical Geography, 81(4), 753-765.Google Scholar
  133. Taschner, S., and Ranzi, R. (2002) Comparing the opportunities of Landsat TM and Aster data for monitoring a debris covered glacier in the Italian Alps within the GLIMS project. Paper presented at IEEE International Geoscience and Remote Sensing Symposium, Vol. II, pp. 1044-1046.Google Scholar
  134. Toutin, T. (2002) Three-dimensional topographic mapping with ASTER stereo data in rugged topography. IEEE Transactions on GeoScience and Remote Sensing, 40(10), 2241-2247.Google Scholar
  135. Toutin, T. (2008) ASTER DEMs for geomatic and geo- scientific applications: A review. International Journal of Remote Sensing, 29(7), 1855-1875.Google Scholar
  136. Toutin, Th., Blondel, E., Clavet, D., and Schmitt, C.V. (2013) Stereo radargrammetry with Radarsat-2 in the Canadian Arctic. IEEE Transactions on Geoscience and Remote Sensing, 51(5), 2601-2609, doi: 10.1109/ TGRS.2012.2211605. van Asselen, S., and Seijmonsbergen, A.C. (2006) Expert- driven semi-automated geomorphological mapping for a mountainous area using a laser DTM. Geomorphol- ogy, 78(3/4), 309-320. Weber, M., Herrmann, J., Hajnsek, I., and Moreira, A. (2006) TerraSAR-X and TanDEM-X: Global mapping in 3D using radar. Paper presented at Proceedings of the Second International Workshop on ‘‘The Future of Remote Sensing,’’ Antwerp, Belgium (ISPRS Intercom- mission Working Group I/V Autonomous Navigation, 36-1/W44), International Society for Photogrammetry and Remote Sensing, Hanover, Germany. Weidmann, Y. (2004) Combination of ASTER- and SRTM-DEMs for the assessment of natural hazards in the Pamir Tadjikistan. Unpublished thesis, FHBB Muttenz, Basle [in German].Google Scholar
  137. Wilson, J.P., and Gallant, J.C. (Eds.) (2000) Terrain Analysis: Principles and Applications. John Wiley and Sons, New York.Google Scholar
  138. Yadav, R.R., Park, W.K., Singh, J., and Dubey, B. (2004) Do the western Himalayas defy global warming? Geophysical Research Letters, 31, L17201.Google Scholar
  139. Zemp, M., Jansson, P., Holmlund, P., Gärtner-Roer, I., Koblet, T., Thee, P., and Haeberli, W. (2010) Reanalysis of multitemporal aerial images of Storglaciaren, Sweden (1959-99), Part 2: Comparison of glaciological and volumetric mass balances. Cryosphere, 4, 345-357.Google Scholar
  140. Zwally, H.J., Schutz, B., Abdalati, W., Abshire, J., Bentley, C., Brenner, A., Bufton, J., Dezio, J., Hancock, D., Harding, D. et al. (2002) ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. Journal of Geodynamics, 34, 405-445.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Duncan J. Quincey
    • 1
  • Michael P. Bishop
    • 2
  • Andreas Kääb
    • 3
  • Etienne Berthier
    • 4
  • Boris Flach
    • 5
  • Tobias Bolch
    • 5
    • 6
  • Manfred Buchroithner
    • 7
  • Ulrich Kamp
    • 8
  • Siri Jodha Singh Khalsa
    • 9
  • Thierry Toutin
    • 10
  • Umesh K. Haritashya
    • 11
  • Adina Racoviteanu
    • 12
  • John F. Shroder
    • 13
  • Bruce H. Raup
    • 14
  1. 1.School of GeographyUniversity of LeedsLeedsUK
  2. 2.Department of GeographyTexas A&M UniversityCollege StationUSA
  3. 3.University of OsloOsloNorway
  4. 4.Centre national de la recherche scientifique, Laboratoire d’Etude en Ge´ophysique et Oce´anographie SpatialesOMP-LEGOSToulouseFrance
  5. 5.Department of GeographyUniversity of Zurich IrchelZurichSwitzerland
  6. 6.Institut für KartographieTechnische UniversitätDresdenGermany
  7. 7.Fakultät Forst-, Geo-Und Hydrowissenschaften FachrichtungGeowissenschaftenDresdenGermany
  8. 8.Department of GeographyThe University of MontanaMissoulaUSA
  9. 9.National Snow & Ice Data CenterUniversity of ColoradoBoulderUSA
  10. 10.Natural Resources CanadaOttawaCanada
  11. 11.Department of GeologyUniversity of DaytonDaytonUSA
  12. 12.Laboratoire de Glaciologie et Géophysique del’Environnement (LGGE)Saint-Martin-d’HèresGrenobleFrance
  13. 13.Department of Geography and GeologyUniversity of Nebraska-OmahaOmahaUSA
  14. 14.University of ColoradoBoulderUSA

Personalised recommendations