Capacitated Domination and Covering: A Parameterized Perspective

  • Michael Dom
  • Daniel Lokshtanov
  • Saket Saurabh
  • Yngve Villanger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5018)

Abstract

Capacitated versions of Vertex Cover and Dominating Set have been studied intensively in terms of polynomial time approximation algorithms. Although the problems Dominating Set and Vertex Cover have been subjected to considerable scrutiny in the parameterized complexity world, this is not true for their capacitated versions. Here we make an attempt to understand the behavior of the problems Capacitated Dominating Set and Capacitated Vertex Cover from the perspective of parameterized complexity.

The original, uncapacitated versions of these problems, Vertex Cover and Dominating Set, are known to be fixed parameter tractable when parameterized by a structure of the graph called the treewidth (tw). In this paper we show that the capacitated versions of these problems behave differently. Our results are:

Capacitated Dominating Set is W1-hard when parameterized by treewidth. In fact, Capacitated Dominating Set is W1-hard when parameterized by both treewidth and solution size k of the capacitated dominating set.

– Capacitated Vertex Cover is W1-hard when parameterized by treewidth.

– Capacitated Vertex Cover can be solved in time 2O(tw logk)nO(1) where tw is the treewidth of the input graph and k is the solution size. As a corollary, we show that the weighted version of Capacitated Vertex Cover in general graphs can be solved in time 2O(k logk)nO(1). This improves the earlier algorithm of Guo et al. [15] running in time \(O(1.2^{k^2}+n^2)\). Capacitated Vertex Cover is, therefore, to our knowledge the first known “subset problem” which has turned out to be fixed parameter tractable when parameterized by solution size but W1-hard when parameterized by treewidth.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for DOMINATING SET and related problems on planar graphs. Algorithmica 33(4), 461–493 (2002)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dominating set. J. ACM 51(3), 363–384 (2004)MathSciNetGoogle Scholar
  3. 3.
    Bläser, M.: Computing small partial coverings. Inf. Process. Lett. 85(6), 327–331 (2003)CrossRefGoogle Scholar
  4. 4.
    Chen, J., Kanj, I.A., Xia, G.: Improved parameterized upper bounds for Vertex Cover. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 238–249. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Chuzhoy, J., Naor, J.: Covering problems with hard capacities. SIAM J. Comput. 36(2), 498–515 (2006)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM 52(6), 866–893 (2005)MathSciNetGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Duh, R., Fürer, M.: Approximation of k-Set Cover by semi-local optimization. In: Proc. 29th STOC, pp. 256–264. ACM Press, New York (1997)Google Scholar
  9. 9.
    Feige, U.: A threshold of ln n for approximating Set Cover. J. ACM 45(4), 634–652 (1998)MathSciNetMATHGoogle Scholar
  10. 10.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)Google Scholar
  11. 11.
    Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: Branch-width and exponential speed-up. SIAM J. Comput. 36(2), 281–309 (2006)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Gandhi, R., Halperin, E., Khuller, S., Kortsarz, G., Srinivasan, A.: An improved approximation algorithm for Vertex Cover with hard capacities. J. Comput. System Sci. 72(1), 16–33 (2006)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Guha, S., Hassin, R., Khuller, S., Or, E.: Capacitated vertex covering. J. Algorithms 48(1), 257–270 (2003)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Guo, J., Niedermeier, R.: Linear problem kernels for NP-hard problems on planar graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 375–386. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of Vertex Cover variants. Theory Comput. Syst. 41(3), 501–520 (2007)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Kloks, T.: Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994)MATHGoogle Scholar
  17. 17.
    Lovàsz, L.: On the ratio of optimal fractional and integral covers. Discrete Math. 13, 383–390 (1975)CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Mölle, D., Richter, S., Rossmanith, P.: Enumerate and expand: Improved algorithms for Connected Vertex Cover and Tree Cover. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 270–280. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Moser, H.: Exact algorithms for generalizations of Vertex Cover. Diploma thesis, Institut für Informatik, Friedrich-Schiller Universität Jena (2005)Google Scholar
  20. 20.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)MATHGoogle Scholar
  21. 21.
    Nishimura, N., Ragde, P., Thilikos, D.M.: Fast fixed-parameter tractable algorithms for nontrivial generalizations of Vertex Cover. Discrete Appl. Math. 152(1–3), 229–245 (2005)CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Raman, V., Saurabh, S.: Short cycles make W-hard problems hard: FPT algorithms for W-hard problems in graphs with no short cycles. Algorithmica (to appear, 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Michael Dom
    • 1
  • Daniel Lokshtanov
    • 2
  • Saket Saurabh
    • 2
  • Yngve Villanger
    • 2
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Department of InformaticsUniversity of BergenBergenNorway

Personalised recommendations