A Tighter Bound for Counting Max-Weight Solutions to 2SAT Instances

  • Magnus Wahlström
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5018)

Abstract

We give an algorithm for counting the number of max-weight solutions to a 2SAT formula, and improve the bound on its running time to Open image in new window. The main source of the improvement is a refinement of the method of analysis, where we extend the concept of compound (piecewise linear) measures to multivariate measures, also allowing the optimal parameters for the measure to be found automatically. This method extension should be of independent interest.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brueggemann, T., Kern, W.: An improved deterministic local search algorithm for 3-SAT. Theoretical Computer Science 329(1–3), 303–313 (2004)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Dahllöf, V., Jonsson, P., Wahlström, M.: Counting satisfying assignments in 2-SAT and 3-SAT. In: H. Ibarra, O., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 535–543. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Dahllöf, V., Jonsson, P., Wahlström, M.: Counting models for 2-SAT and 3-SAT formulae. Theoretical Computer Science 332(1–3), 265–291 (2005)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Dubois, O.: Counting the number of solutions for instances of satisfiability. Theoretical Computer Science 81, 49–64 (1991)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Eppstein, D.: Quasiconvex analysis of backtracking algorithms. In: Proceedings of the 15th annual ACM-SIAM symposium on Discrete algorithms (SODA 2004), pp. 788–797 (2004)Google Scholar
  6. 6.
    Fomin, F.V., Grandoni, F., Kratsch, D.: Some new techniques in design and analysis of exact (exponential) algorithms. Bulletin of the EATCS 87, 47–77 (2005)MathSciNetGoogle Scholar
  7. 7.
    Fürer, M., Kasiviswanathan, S.P.: Algorithms for counting 2-SAT solutions and colorings with applications. Electronic Colloquium on Computational Complexity (ECCC) 5(033) (2005)Google Scholar
  8. 8.
    Iwama, K., Tamaki, S.: Improved upper bounds for 3-SAT. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), p. 328 (2004)Google Scholar
  9. 9.
    Kozen, D.: The design and analysis of algorithms. Springer, New York (1992)Google Scholar
  10. 10.
    Littman, M., Pitassi, T., Impagliazzo, R.: On the complexity of counting satisfying assignments. In: The working notes of the LICS 2001 workshop on Satisfiability (2001)Google Scholar
  11. 11.
    Ryser, H.J.: Combinatorial Mathematics. The Mathematical Association of America, Washington (1963)Google Scholar
  12. 12.
    Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing 20(5), 865–877 (1991)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Valiant, L.: The complexity of enumeration and reliability problems. SIAM Journal of Computing 8, 410–421 (1979)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer Science 8, 189–201 (1979)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Wahlström, M.: An algorithm for the SAT problem for formulae of linear length. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 107–118. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Wahlström, M.: Algorithms, measures, and upper bounds for satisfiability and related problems. Linköping Studies in Science and Technology, PhD Dissertation no. 1079 (2007), http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-8714
  17. 17.
    Zhang, W.: Number of models and satisfiability of sets of clauses. Theoretical Computer Science 155, 277–288 (1996)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Magnus Wahlström
    • 1
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations