Advertisement

Four-Valued Extension of Rough Sets

  • Aida Vitória
  • Andrzej Szałas
  • Jan Małuszyński
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5009)

Abstract

Rough set approximations of Pawlak [15] are sometimes generalized by using similarities between objects rather than elementary sets. In practical applications, both knowledge about properties of objects and knowledge of similarity between objects can be incomplete and inconsistent. The aim of this paper is to define set approximations when all sets, and their approximations, as well as similarity relations are four-valued. A set is four-valued in the sense that its membership function can have one of the four logical values: unknown (u), false (f), inconsistent (i), or true (t). To this end, a new implication operator and set-theoretical operations on four-valued sets, such as set containment, are introduced. Several properties of lower and upper approximations of four-valued sets are also presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersson, R., Vitória, A., Małuszyński, J., Komorowski, J.: Rosy: A rough knowledge base system. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W., Hu, X. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 48–58. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Arieli, O., Avron, A.: The value of the four values. Artificial Intelleligence 102(1), 97–141 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Banerjee, M.: Rough sets and three-valued łukasiewicz logic. Fundamenta Informaticae 32, 213–220 (1997)Google Scholar
  4. 4.
    Belnap, N.: A useful four-valued logic. In: Eptein, G., Dunn, J. (eds.) Modern Uses of Many Valued Logic, Reidel, pp. 8–37 (1977)Google Scholar
  5. 5.
    Bolc, L., Borowik, P.: Many-Valued Logics, 1. Theoretical Foundations. Springer, Berlin (1992)MATHGoogle Scholar
  6. 6.
    Doherty, P., Łukaszewicz, W., Szałas, A.: Tolerance spaces and approximative representational structures. In: Günter, A., Kruse, R., Neumann, B. (eds.) KI 2003. LNCS (LNAI), vol. 2821, pp. 475–489. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Doherty, P., Łukaszewicz, W., Szałas, A.: Communication between agents with heterogeneous perceptual capabilities. Journal of Information Fusion 8(1), 56–69 (2007)CrossRefGoogle Scholar
  8. 8.
    Doherty, P., Łukaszewicz, W., Skowron, A., Szałas, A.: Knowledge Representation Techniques. In: A Rough Set Approach. Studies in Fuziness and Soft Computing, vol. 202, Springer, Heidelberg (2006)Google Scholar
  9. 9.
    Doherty, P., Szałas, A.: On the correspondence between approximations and similarity. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 143–152. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Doherty, P., Szałas, A.: A correspondence framework between three-valued logics and similarity-based approximate reasoning. Fundamenta Informaticae 75(1-4), 179–193 (2007)MATHMathSciNetGoogle Scholar
  11. 11.
    Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, pp. 203–232. Kluwer, Dordrecht (1992)Google Scholar
  12. 12.
    Fitting, M.C.: Bilattices in logic programming. In: Epstein, G. (ed.) 20th International Symposium on Multiple-Valued Logic, pp. 238–247. IEEE CS Press, Los Alamitos (1990)Google Scholar
  13. 13.
    Ginsberg, M.: Multivalued logics: a uniform approach to reasoning in AI. Computational Intelligence 4, 256–316 (1988)Google Scholar
  14. 14.
    Maluszyński, J., Szałas, A., Vitória, A.: A four-valued logic for rough set-like approximate reasoning. In: Peters, J.F., Skowron, A., Düntsch, I., Grzymała-Busse, J.W., Orłowska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 176–190. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)MATHGoogle Scholar
  16. 16.
    Rescher, N.: Many-Valued Logic. McGraw Hill, New York (1969)MATHGoogle Scholar
  17. 17.
    Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)MATHMathSciNetGoogle Scholar
  18. 18.
    Słowiński, R., Vanderpooten, D.: A generalized definition of rough approximations based on similarity. IEEE Trans. on Data and Knowledge Engineering. 12(2), 331–336 (2000)CrossRefGoogle Scholar
  19. 19.
    Vitória, A.: A framework for reasoning with rough sets. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets IV. LNCS, vol. 3700, pp. 178–276. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Aida Vitória
    • 1
  • Andrzej Szałas
    • 2
    • 3
  • Jan Małuszyński
    • 3
  1. 1.Department of Science and TechnologyLinköping UniversityNorrköpingSweden
  2. 2.Institute of InformaticsWarsaw UniversityWarsawPoland
  3. 3.Department of Computer and Information ScienceLinköping UniversityLinköpingSweden

Personalised recommendations