Advertisement

Speeding-Up Non-clausal Local Search for Propositional Satisfiability with Clause Learning

  • Zbigniew Stachniak
  • Anton Belov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4996)

Abstract

In this paper we discuss search heuristics for non-clausal stochastic local search procedures for propositional satisfiability. These heuristics are based on a new method for variable selection as well as a novel clause learning technique for dynamic input formula simplification as well as for guiding the search for a model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achlioptas, D., Jia, H., Moore, C.: Hiding Satisfying Assignments: Two are Better than One. J. of Artificial Intelligence Research 24, 623–639 (2005)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Crawford, J.M., Kearns, M.J., Shapire, R.E.: The Minimal Disagreement Parity Problem as Hard Satisfiability Problem. Computational Intell. Research Lab and AT&T Bell Labs TR (1994)Google Scholar
  3. 3.
    Fang, H., Ruml, W.: Complete Local Search for Propositional Satisfiability. In: AAAI, pp. 161–166 (2004)Google Scholar
  4. 4.
    Hoos, H.H.: Local Search – Methods, Models, Applications. TU Dermstadt, FB Informatik, Darmstadt, Germany (1998)Google Scholar
  5. 5.
    Hoos, H.H.: On the Run-Time Behavior of Stochastic Local Search Algorithms for SAT. In: AAAI/IAAI, pp. 661–666 (1999)Google Scholar
  6. 6.
    Hoos, H.H.: An Adaptive Noise Mechanism for WalkSAT. In: AAAI, pp. 655–660 (2002)Google Scholar
  7. 7.
    Hoos, H.H., Stutzle, T.: Local Search Algorithms for SAT: An Empirical Evaluation. Journal of Automated Reasoning 24, 421–481 (2000)zbMATHCrossRefGoogle Scholar
  8. 8.
    Hoos, H.H., Stutzle, T.: Stochastic Local Search: Foundations and Applications. Elsevier, Amsterdam (2005)zbMATHGoogle Scholar
  9. 9.
    Kautz, H., Selman, B., McAllester, D.: Exploiting Variable Dependency in Local Search. In: IJCAI (1997)Google Scholar
  10. 10.
    Lynce, I., Marques-Silva, J.P.: An Overview of Backtrack Search Satisfiability Algorithms. Annals of Mathematics and Artificial Intelligence, 307–326 (2003)Google Scholar
  11. 11.
    McAllester, D., Selman, B., Kautz, H.: Evidence for Invariants in Local Search. In: AAAI, pp. 321–326 (1997)Google Scholar
  12. 12.
    Navarro, J.A., Voronkov, A.: Generation of Hard Non-Clausal Random Satisfiability Problems. In: AAAI, pp. 436–442 (2005)Google Scholar
  13. 13.
    Prestwich, S.D.: Variable Dependency in Local Search: Prevention Is Better Than Cure. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 107–120. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Stachniak, Z.: Going Non-clausal. In: SAT, pp. 316–322 (2002)Google Scholar
  15. 15.
    Tompkins, D.A., Hoos, H.: UBCSAT: An Implementation and Experimentation Environment for SLS Algorithms for SAT and MAX-SAT. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 306–320. Springer, Heidelberg (2005)Google Scholar
  16. 16.
    Velev, M.: Miroslav Velev’s SAT Benchmarks, http://www.miroslav-velev.com/sat_benchmarks.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Zbigniew Stachniak
    • 1
  • Anton Belov
    • 1
  1. 1.Department of Computer Science and EngineeringYork UniversityTorontoCanada

Personalised recommendations