How Many Conflicts Does It Need to Be Unsatisfiable?

  • Dominik Scheder
  • Philipp Zumstein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4996)


A pair of clauses in a CNF formula constitutes a conflict if there is a variable that occurs positively in one clause and negatively in the other. Clearly, a CNF formula has to have conflicts in order to be unsatisfiable—in fact, there have to be many conflicts, and it is the goal of this paper to quantify how many.

An unsatisfiable k-CNF has at least 2 k clauses; a lower bound of 2 k for the number of conflicts follows easily. We improve on this trivial bound by showing that an unsatisfiable k-CNF formula requires Ω(2.32 k ) conflicts. On the other hand there exist unsatisfiable k-CNF formulas with \(O(\frac{4^k\log^3 k}{k})\) conflicts. This improves the simple bound O(4 k ) arising from the unsatisfiable k-CNF formula with the minimum number of clauses.


satisfiability unsatisfiable formulas conflict graph Lovász Local Lemma 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kullmann, O.: The combinatorics of conflicts between clauses. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 426–440. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Erdős, P., Faudree, R.J., Rousseau, C.C., Schelp, R.H.: The size ramsey number. Periodica Mathematica Hungarica 9(2-2), 145–161 (1978)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Faudree, R.J., Schelp, R.H.: A survey of results on the size Ramsey number. In: Paul Erdős and his mathematics, II (Budapest, 1999), János Bolyai Math. Soc. Budapest. Bolyai Soc. Math. Stud, vol. 11, pp. 291–309 (2002)Google Scholar
  4. 4.
    Hoory, S., Szeider, S.: A note on unsatisfiable k-CNF formulas with few occurrences per variable. SIAM Journal on Discrete Mathematics 20(2), 523–528 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Welzl, E.: Boolean satisfiability – combinatorics and algorithms (lecture notes) (2005),
  6. 6.
    Kratochvíl, J., Savický, P., Tuza, Z.: One more occurrence of variables makes satisfiability jump from trivial to NP-complete. SIAM Journal of Computing 22(1), 203–210 (1993)CrossRefzbMATHGoogle Scholar
  7. 7.
    Berman, P., Karpinski, M., Scott, A.D.: Approximation hardness and satisfiability of bounded occurrence instances of SAT. Electronic Colloquium on Computational Complexity (ECCC) 10(022) (2003)Google Scholar
  8. 8.
    Hooker, J.N., Vinay, V.: Branching rules for satisfiability. Journal of Automated Reasoning 15, 359–383 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Czumaj, A., Scheideler, C.: A new algorithm approach to the general Lovász local lemma with applications to scheduling and satisfiability problems (extended abstract). In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 38–47. ACM, New York (2000); (electronic) CrossRefGoogle Scholar
  10. 10.
    Erdős, P., Spencer, J.: Lopsided Lovász local lemma and Latin transversals. Discrete Appl. Math. 30, 151–154 (1991); ARIDAM III (New Brunswick, NJ, 1988) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Alon, N., Spencer, J.H.: The probabilistic method, 2nd edn. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience [John Wiley & Sons], New York (2000); With an appendix on the life and work of Paul ErdőszbMATHGoogle Scholar
  12. 12.
    Lu, L., Székely, L.: Using Lovász local lemma in the space of random injections. Electron. J. Combin. 14(1), 13 (2007) Research Paper 63 (electronic) Google Scholar
  13. 13.
    Papadimitriou, C.H., Wolfe, D.: The complexity of facets resolved. J. Comput. Syst. Sci. 37(1), 2–13 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Szeider, S.: Minimal unsatisfiable formulas with bounded clause-variable difference are fixed-parameter tractable. J. Comput. Syst. Sci. 69(4), 656–674 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Kleine Büning, H.: On subclasses of minimal unsatisfiable formulas. Discrete Appl. Math. 107(1-3), 83–98 (2000); Boolean functions and related problemsCrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Fleischner, H., Kullmann, O., Szeider, S.: Polynomial-time recognition of minimal unsatisfiable formulas with fixed clause-variable difference. Theoret. Comput. Sci. 289(1), 503–516 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Kleine Büning, H., Zhao, X.: The complexity of some subclasses of minimal unsatisfiable formulas. J. Satisf. Boolean Model. Comput. 3(1-2), 1–17 (2007)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dominik Scheder
    • 1
  • Philipp Zumstein
    • 1
  1. 1.Institute of Theoretical Computer ScienceETH ZürichZürichSwitzerland

Personalised recommendations