Topological Semantics of Justification Logic

  • Sergei Artemov
  • Elena Nogina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5010)

Abstract

The Justification Logic is a family of logical systems obtained from epistemic logics by adding new type of formulas Open image in new window which reads as t is a justification for F. The major epistemic modal logic S4 has a well-known Tarski topological interpretation which interprets \(\Box F\) as the interior of F (a topological equivalent of the ‘knowable part of F’). In this paper we extend the Tarski topological interpretation from epistemic modal logics to justification logics which have both: knowledge assertions \(\Box F\) and justification assertions Open image in new window. This topological semantics interprets modality as the interior, terms t represent tests, and a justification assertion Open image in new window represents a part of F which is accessible for test t. We establish a number of soundness and completeness results with respect to Kripke topology and the real line topology for S4-based systems of Justification Logic.

Keywords

Justification Logic Logic of Proofs modal logic topological semantics Tarski 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artemov, S.: Logic of proofs. Annals of Pure and Applied Logic 67(1), 29–59 (1994)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Artemov, S.: Operational modal logic. Technical Report MSI 95-29, Cornell University (1995)Google Scholar
  3. 3.
    Artemov, S.: Explicit provability and constructive semantics. Bulletin of Symbolic Logic 7(1), 1–36 (2001)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Artemov, S.: Kolmogorov and Gödel’s approach to intuitionistic logic: current developments. Russian Mathematical Surveys 59(2), 203–229 (2004)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Artemov, S.: Justified common knowledge. Theoretical Computer Science 357(1-3), 4–22 (2006)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Artemov, S., Beklemishev, L.: Provability logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 13, pp. 229–403. Kluwer, Dordrecht (2004)Google Scholar
  7. 7.
    Artemov, S., Davoren, J., Nerode, A.: Modal logics and topological semantics for hybrid systems. Technical Report MSI 97-05, Cornell University (1997)Google Scholar
  8. 8.
    Artemov, S., Nogina, E.: Logic of knowledge with justifications from the provability perspective. Technical Report TR-2004011, CUNY Ph.D. Program in Computer Science (2004)Google Scholar
  9. 9.
    Artemov, S., Nogina, E.: Introducing justification into epistemic logic. J. of Logic and Computation 15(6), 1059–1073 (2005)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Artemov, S., Nogina, E.: On epistemic logic with justification. In: van der Meyden, R. (ed.) Theoretical Aspects of Rationality and Knowledge. The Tenth Conference (TARK 2005), Singapore, June 10-12, 2005, pp. 279–294. National University of Singapore (2005)Google Scholar
  11. 11.
    Artemov, S., Nogina, E.: On topological semantics of justification logic. In: Algebraic and Topological Methods in Non-Classical Logics (TANCL 2007), Oxford, England (2007), http://www2.maths.ox.ac.uk/notices/events/special/tancl07/
  12. 12.
    Bezhanishvili, G., Gehrke, M.: Completeness of S4 with respect to the real line: revisited. Annals of Pure and Applied Logic 131, 287–301 (2005)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Dabrowski, A., Moss, L., Parikh, R.: Topological Reasoning and the Logic of Knowledge. Annals of Pure and Applied Logic 78(1-3), 73–110 (1996)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Davoren, J., Nerode, A.: Logics for Hybrid Systems (invited paper). Proceedings of the IEEE 88(7), 985–1010 (2000)CrossRefGoogle Scholar
  15. 15.
    de Jongh, D., Japaridze, G.: Logic of provability. In: Buss (ed.) Handbook of Proof Theory, pp. 475–546. Elsevier, Amsterdam (1998)Google Scholar
  16. 16.
    Fitting, M.: A semantics for the logic of proofs. Technical Report TR-2003012, CUNY Ph.D. Program in Computer Science (2003)Google Scholar
  17. 17.
    Fitting, M.: The logic of proofs, semantically. Annals of Pure and Applied Logic 132(1), 1–25 (2005)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Gödel, K.: Eine Interpretation des intuitionistischen Aussagenkalkuls. Ergebnisse Math. Kolloq. 4, 39–40 (1933); English translation in: Feferman, S., et al., (eds) Kurt Gödel Collected Works, vol. I, pp. 301–303. Oxford University Press, Oxford, Clarendon Press, New York (1986) Google Scholar
  19. 19.
    Gödel, K.: Vortrag bei Zilsel, 1938. In: Feferman, S. (ed.) Kurt Gödel Collected Works, vol. III, pp. 86–113. Oxford University Press, Oxford (1995)Google Scholar
  20. 20.
    Kremer, P., Mints, G.: Dynamic topological logic. Annals of Pure and Applied Logic 131, 133–158 (2005)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Kuratowski, C.: Sur l’operation a de l’analysis situs. Fundamenta Mathematicae 3, 181–199 (1922)Google Scholar
  22. 22.
    Lewis, C.I.: A Survey of Symbolic Logic. University of California Press (1918)Google Scholar
  23. 23.
    Lewis, C.I., Langford, C.H.: Symbolic logic. Dover New York (1932)Google Scholar
  24. 24.
    McKinsey, J.C.C., Tarski, A.: The algebra of topology. Annals of Mathematics 45, 141–191 (1944)CrossRefMathSciNetGoogle Scholar
  25. 25.
    McKinsey, J.C.C., Tarski, A.: Some theorems about the sentential calculi of Lewis and Heyting. J. of Symbolic Logic 13, 1–15 (1948)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Mints, G., Zhang, T.: A proof of topological completeness for S4 in (0, 1). Annals of Pure and Applied Logic 133(1-3), 231–245 (2005)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Mkrtychev, A.: Models for the logic of proofs. In: Adian, S., Nerode, A. (eds.) LFCS 1997. LNCS, vol. 1234, pp. 266–275. Springer, Heidelberg (1997)Google Scholar
  28. 28.
    Nogina, E.: Logic of proofs with the strong provability operator. Technical Report ILLC Prepublication Series ML-94-10, Institute for Logic, Language and Computation, University of Amsterdam (1994)Google Scholar
  29. 29.
    Nogina, E.: Grzegorczyk logic with arithmetical proof operators. Fundamental and Applied Mathematics 2(2), 483–499 (1996) (in Russian)Google Scholar
  30. 30.
    Nogina, E.: On logic of proofs and provability. Bull. of Symbolic Logic 12(2), 356 (2006)Google Scholar
  31. 31.
    Nogina, E.: Epistemic completeness of GLA. Bull. of Symbolic Logic 13(3), 407 (2007)Google Scholar
  32. 32.
    Riesz, F.: Stetigkeitsbegriff und abstrakte mengenlehre. In: Atti del IV Congr. Internat. d. Mat., vol. II, Roma (1909)Google Scholar
  33. 33.
    Sidon, T.: Provability logic with operations on proofs. In: Adian, S., Nerode, A. (eds.) LFCS 1997. LNCS, vol. 1234, pp. 342–353. Springer, Heidelberg (1997)Google Scholar
  34. 34.
    Slavnov, S.: On completeness of dynamic topological logic. Moscow Math J. 5(2), 477–492 (2005)MATHMathSciNetGoogle Scholar
  35. 35.
    Yavorskaya (Sidon), T.: Logic of proofs and provability. Annals of Pure and Applied Logic 113(1-3), 345–372 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sergei Artemov
    • 1
  • Elena Nogina
    • 2
  1. 1.CUNY Graduate CenterNew York CityUSA
  2. 2.Dept. of MathBMCC CUNYNew YorkU.S.A.

Personalised recommendations