On the Complexity of Membership and Counting in Height-Deterministic Pushdown Automata

  • Nutan Limaye
  • Meena Mahajan
  • Antoine Meyer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5010)

Abstract

While visibly pushdown languages properly generalise regular languages and are properly contained in deterministic context-free languages, the complexity of their membership problem is equivalent to that of regular languages. However, the corresponding counting problem could be harder than counting paths in a non-deterministic finite automaton: it is only known to be in LogDCFL.

We investigate the membership and counting problems for generalisations of visibly pushdown automata, defined using the notion of height-determinism. We show that, when the stack-height of a given PDA can be computed using a finite transducer, both problems have the same complexity as for visibly pushdown languages. We also show that when allowing pushdown transducers instead of finite-state ones, both problems become LogDCFL-complete; this uses the fact that pushdown transducers are sufficient to compute the stack heights of all real-time height-deterministic pushdown automata, and yields a candidate arithmetization of LogDCFL that is no harder than LogDCFL(our main result).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sudborough, I.H.: A note on tape-bounded complexity classes and linear context-free languages. JACM 22(4), 499–500 (1975)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Sudborough, I.: On the tape complexity of deterministic context-free language. JACM 25(3), 405–414 (1978)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ibarra, O., Jiang, T., Ravikumar, B.: Some subclasses of context-free languages in NC 1. IPL 29, 111–117 (1988)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Holzer, M., Lange, K.J.: On the complexities of linear LL(1) and LR(1) grammars. In: Ésik, Z. (ed.) FCT 1993. LNCS, vol. 710, pp. 299–308. Springer, Heidelberg (1993)Google Scholar
  5. 5.
    Barrington, D.: Bounded-Width Polynomial-Size Branching Programs Recognize Exactly Those Languages in NC1. JCSS 38(1), 150–164 (1989)MATHMathSciNetGoogle Scholar
  6. 6.
    Lange, K.J.: Complexity and structure in formal language theory. In: 8th CoCo, pp. 224–238. IEEE Computer Society, Los Alamitos (1993)Google Scholar
  7. 7.
    Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL recognition. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 422–432. Springer, Heidelberg (1980)Google Scholar
  8. 8.
    Braunmuhl, B.V., Verbeek, R.: Input-driven languages are recognized in log n space. In: Karpinski, M. (ed.) FCT 1983. LNCS, vol. 158, pp. 40–51. Springer, Heidelberg (1983)Google Scholar
  9. 9.
    Dymond, P.: Input-driven languages are in logn depth. IPL 26, 247–250 (1988)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Alur, R., Madhusudan, P.: Visibly pushdown languages. In: 36th STOC, pp. 202–211. ACM, New York (2004)Google Scholar
  11. 11.
    Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic NC 1 computation. JCSS 57(2), 200–212 (1998)MATHGoogle Scholar
  12. 12.
    Limaye, N., Mahajan, M., Rao, B.V.R.: Arithmetizing classes arround NC1 and L. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 477–488. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Limaye, N., Mahajan, M., Rao, B.V.R.: Arithmetizing classes arround NC1 and L. Technical Report ECCC TR07- (2007) submitted to TCS (spl.issue for STACS 2007) (2007)Google Scholar
  14. 14.
    Nowotka, D., Srba, J.: Height-deterministic pushdown automata. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 125–134. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Caucal, D.: Synchronization of pushdown automata. In: H. Ibarra, O., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 120–132. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Alur, R., Madhusudan, P.: Adding nesting structure to words. In: H. Ibarra, O., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 1–13. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Blass, A., Gurevich, Y.: A note on nested words. Technical Report MSR-TR-2006-139, Microsoft Research (October 2006)Google Scholar
  18. 18.
    Buss, S.: The Boolean formula value problem is in ALOGTIME. In: 19th STOC, pp. 123–131. ACM, New York (1987)Google Scholar
  19. 19.
    Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer, Heidelberg (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Nutan Limaye
    • 1
  • Meena Mahajan
    • 1
  • Antoine Meyer
    • 2
  1. 1.The Institute of Mathematical SciencesChennaiIndia
  2. 2.LIAFAUniversité Paris Diderot – Paris 7Paris Cedex 13France

Personalised recommendations