A Semantic Proof of Polytime Soundness of Light Affine Logic

  • Ugo Dal Lago
  • Martin Hofmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5010)

Abstract

We define a denotational semantics for Light Affine Logic (LAL) which has the property that denotations of functions are polynomial time computable by construction of the model. This gives a new proof of polytime-soundness of LAL which is considerably simpler than the standard proof based on proof nets and also is entirely semantical in nature. The model construction uses a new instance of a resource monoid; a general method for interpreting variations of linear logic with complexity restrictions introduced earlier by the authors.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amadio, R.M.: Max-plus quasi-interpretations. In: Proceedings of the 7th International Conference on Typed Lambda Calculi and Applications, pp. 31–45 (2003)Google Scholar
  2. 2.
    Asperti, A., Roversi, L.: Intuitionistic light affine logic. ACM Transactions on Computational Logic 3(1), 137–175 (2002)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bellantoni, S., Niggl, K.H., Schwichtenberg, H.: Higher type recursion, ramification and polynomial time. Annals of Pure and Applied Logic 104, 17–30 (2000)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cook, S., Urquhart, A.: Functional interpretations of feasible constructive arithmetic. Annals of Pure and Applied Logic 63(2), 103–200 (1993)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Coppola, P., Martini, S.: Typing lambda terms in elementary logic with linear constraints. In: Proceedings of the 6th International Conference on Typed Lambda-Calculus and Applications, pp. 76–90 (2001)Google Scholar
  6. 6.
    Crossley, J., Mathai, G., Seely, R.: A logical calculus for polynomial-time realizability. Journal of Methods of Logic in Computer Science 3, 279–298 (1994)MathSciNetGoogle Scholar
  7. 7.
    Lago, U.D., Hofmann, M.: Quantitative models and implicit complexity. In: Proc. Foundations of Software Technology and Theoretical Computer Science, pp. 189–200 (2005)Google Scholar
  8. 8.
    Girard, J.-Y.: Light linear logic. Information and Computation 143(2), 175–204 (1998)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hofmann, M.: Linear types and non-size-increasing polynomial time computation. In: Proceedings of the 14th IEEE Syposium on Logic in Computer Science, pp. 464–473 (1999)Google Scholar
  10. 10.
    Hofmann, M.: Safe recursion with higher types and BCK-algebra. Annals of Pure and Applied Logic 104, 113–166 (2000)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hofmann, M., Scott, P.: Realizability models for BLL-like languages. Theoretical Computer Science 318(1-2), 121–137 (2004)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kreisel, G.: Interpretation of analysis by means of constructive functions of finite types. In: Heyting, A. (ed.) Constructiviey in Mathematics, pp. 101–128. North-Holland, Amsterdam (1959)Google Scholar
  13. 13.
    Lafont, Y.: Soft linear logic and polynomial time. Theoretical Computer Science 318, 163–180 (2004)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Lago, U.D., Martini, S.: Phase semantics and decidability of elementary affine logic. Theor. Comput. Sci. 318(3), 409–433 (2004)MATHCrossRefGoogle Scholar
  15. 15.
    Murawski, A.S., Luke Ong, C.-H.: Discreet games, light affine logic and ptime computation. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 427–441. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Roversi, L.: A p-time completeness proof for light logics. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 469–483. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ugo Dal Lago
    • 1
  • Martin Hofmann
    • 2
  1. 1.Dipartimento di Scienze dell’InformazioneUniversità di Bologna 
  2. 2.Institut für Informatik, LMU München 

Personalised recommendations