Synchronization of Grammars

  • Didier Caucal
  • Stéphane Hassen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5010)

Abstract

Deterministic graph grammars are finite devices which generate the transition graphs of pushdown automata. We define the notion of synchronization by grammars, generalizing previous sub-classes such as visibly and height-deterministic pushdown automata. The languages recognized by grammars synchronized by a given grammar form an effective boolean algebra lying between regular languages and deterministic context-free languages. We also provide a sufficient condition to obtain the closure under concatenation and its iteration.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AM04]
    Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Babai, L. (ed.) 36th STOC, ACM Proceedings, pp. 202–211 (2004)Google Scholar
  2. [BB02]
    Berstel, J., Boasson, L.: Balanced grammars and their languages. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing. LNCS, vol. 2300, pp. 3–25. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. [Ca07]
    Caucal, D.: Deterministic graph grammars. In: Flum, J., Grädel, E., Wilke, T. (eds.) Texts in Logic and Games 2, pp. 169–250. Amsterdam University Press (2007)Google Scholar
  4. [Ca06]
    Caucal, D.: Synchronization of pushdown automata. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 120–132. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. [MS85]
    Muller, D., Schupp, P.: The theory of ends, pushdown automata, and second-order logic. Theoretical Computer Science 37, 51–75 (1985)MATHCrossRefMathSciNetGoogle Scholar
  6. [NS07]
    Nowotka, D., Srba, J.: Height-deterministic pushdown automata. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 125–134. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Didier Caucal
    • 1
  • Stéphane Hassen
    • 2
  1. 1.IGM–CNRS 
  2. 2.IREMIA 

Personalised recommendations