Introducing Time in an Industrial Application of Model-Checking

  • Lionel van den Berg
  • Paul Strooper
  • Kirsten Winter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4916)


The safety of many industrial systems is directly related to time. Model checking has been used to verify that safety requirements are met by a model of the system. In many cases, however, time is excluded to limit the state space explosion. Two approaches to include time constraints are either to use model checking for timed systems, or to integrate an explicit model of time using standard model checking. This paper presents a case study using the latter approach. We have worked closely with one of Australia’s largest railway companies, Queensland Rail, on a real industrial environment to produce models to verify the safety of railway interlockings. Our models are written and optimised for the symbolic model checker NuSMV. In this paper we introduce time into our existing models and examine time in the context of level crossings. We also present quantitative data to show the feasibility of the approach.


model checking real-time system railway interlockings 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Brinksma, E., Mader, A.: Verification and optimization of a PLC control schedule. In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 73–92. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: A new symbolic model verifier. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 495–499. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1996)Google Scholar
  5. 5.
    Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool KRONOS. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 208–219. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  6. 6.
    de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.: SAL 2. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 496–500. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Dutertre, B., Sorea, M.: Modeling and verification of a fault-tolerant real-time startup protocol using calendar automata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 119–214. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Dutertre, B., Sorea, M.: Timed systems in sal. Technical Report SRI-SDL-04-03, SRI Intenational (2004)Google Scholar
  9. 9.
    Emerson, E.A., Mok, A.K., Sistla, A.P., Srinivasan, J.: Quantitative temporal reasoning. Real-Time Systems 4(4), 331–352 (1992)CrossRefGoogle Scholar
  10. 10.
    Holzmann, G.J.: The SPIN Model Checker. IEEE Transactions on Software Engineering 23(5), 279–295 (1997)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Johnston, W., Winter, K., van den Berg, L., Strooper, P., Robinson, P.: Model-based variable and transition orderings for efficient symbolic model checking. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 524–540. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2(4), 255–299 (1990)CrossRefGoogle Scholar
  13. 13.
    Lamport, L.: Real-time model checking is really simple. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 162–175. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Queensland Rail Signal and Operational Systems. Signalling Principles - Brisbane Suburban Area. Technical Report S0414, Queensland Rail Technical Services Group (1998)Google Scholar
  15. 15.
    Sathawornwichit, C., Katayama, T.: A parametric model checking approach for real-time systems design. In: APSEC 2005: Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC 2005), pp. 584–594. IEEE Computer Society Press, Los Alamitos (2005)CrossRefGoogle Scholar
  16. 16.
    Campos, S.V., Clarke, E.: Real-Time Symbolic Model Checking for Discrete Time Models. In: Rus, T., Rattray, C. (eds.) Theories and Experiences for Real-Time System Develpment. AMAST Series in Computing. World Scientific Press, Singapore (1994)Google Scholar
  17. 17.
    Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic Model Checking for Real-Time Systems. In: 7th. Symposium of Logics in Computer Science, pp. 394–406. IEEE Computer Society Press, Los Alamitos (1992)Google Scholar
  18. 18.
    Winter, K., Johnston, W., Robinson, P., Strooper, P., van den Berg, L.: Tool support for checking railway interlocking designs. In: Cant, T. (ed.) Proc. of the 10th Australian Workshop on Safety Related Programmable Systems (SCS 2005), vol. 55, pp. 101–107. Australian Computer Society, Inc (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Lionel van den Berg
    • 1
  • Paul Strooper
    • 1
  • Kirsten Winter
    • 1
  1. 1.University QueenslandQueenslandAustralia

Personalised recommendations