First Experiences with Intel Cluster OpenMP

  • Christian Terboven
  • Dieter an Mey
  • Dirk Schmidl
  • Marcus Wagner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5004)

Abstract

MPI and OpenMP are the de-facto standards for distributed-memory and shared-memory parallelization, respectively. By employing a hybrid approach, that is combing OpenMP and MPI parallelization in one program, a cluster of SMP systems can be exploited. Nevertheless, mixing programming paradigms and writing explicit message passing code might increase the parallel program development time significantly. Intel Cluster OpenMP is the first commercially available OpenMP implementation for a cluster, aiming to combine the ease of use of the OpenMP parallelization paradigm with the cost efficiency of a commodity cluster. In this paper we present our first experiences with Intel Cluster OpenMP.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bull, J.M.: Measuring Synchronisation and Scheduling Overheads in OpenMP. In: European Workshop on OpenMP (EWOMP), Lund, Sweden (September 1999)Google Scholar
  2. 2.
    Deselaers, T., Keysers, D., Ney, H.: Features for Image Retrieval: A Quantitative Comparison. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 228–236. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Hennessy, J.L., Patterson, D.A.: Computer Architecture - A Quantitative Approach. Morgan Kaufmann Publishers Inc, San Francisco (2006)MATHGoogle Scholar
  4. 4.
    Hoeflinger, J.P.: Extending OpenMP to Clusters (2006)Google Scholar
  5. 5.
    Lin, Y., Terboven, C., an Mey, D., Copty, N.: Automatic Scoping of Variables in Parallel Regions of an OpenMP Program. In: Chapman, B.M. (ed.) WOMPAT 2004. LNCS, vol. 3349, pp. 83–97. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Lu, H., Hu, Y.C., Zwaenepoel, W.: OpenMP on Network of Workstations (1998)Google Scholar
  7. 7.
    Sato, M., Harada, H., Hasegawa, A., Ishikawa, Y.: Cluster-enabled OpenMP: An OpenMP compiler for the SCASH software distributed shared memory system. Scientific Programming 9(2,3), 123–130 (2001)Google Scholar
  8. 8.
    Terboven, C., Deselaers, T., Bischof, C., Ney, H.: Shared-Memory Parallelization for Content-based Image Retrieval. In: ECCV 2006 Workshop on Computation Intensive Methods for Computer Vision (CIMCV), Graz, Austria (May 2006)Google Scholar
  9. 9.
    Volmar, T., Brouillet, B., Gallus, H.E., Benetschik, H.: Time Accurate 3D Navier-Stokes Analysis of a 1.5 Stage Axial Flow Turbine (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Christian Terboven
    • 1
  • Dieter an Mey
    • 1
  • Dirk Schmidl
    • 1
  • Marcus Wagner
    • 1
  1. 1.Center for Computing and CommunicationRWTH Aachen UniversityAachenGermany

Personalised recommendations