Advertisement

An Approach for Tracking the 3D Object Pose Using Two Object Points

  • Sai Krishna Vuppala
  • Axel Gräser
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5008)

Abstract

In this paper, a novel and simple approach for tracking the object pose, position and orientation, using two object points when the object is rotated about one of the axes of the reference coordinate system is presented. The object rotation angle can be tracked up to a range of 180° for object rotations around each axis of the reference coordinate system from an initial object situation. The considered two object points are arbitrary points of the object which can be uniquely identified in stereo images. Since the approach requires only two object points, it is advantageous for the robotic applications where very few feature points can be obtained because of lack of pattern information on the objects. The paper also presents the results for the pose estimation of a meal tray in a rehabilitation robotics environment.

Keywords

Tracking 3D Object Pose Object Localization 3D Reconstruction Two Points Approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hutchinson, S., Hager, G., Corke, P.: A Tutorial on Visual Servo Control. IEEE. Trans. Robo. Auto. 12, 651–670 (1996)CrossRefGoogle Scholar
  2. 2.
    Peter, I.C.: Visual Control of Robots. Research Studies Press Ltd, England (1996)Google Scholar
  3. 3.
    Garric, V., Devy, M.: Evaluation of the Calibration and Localization Methods for Visually Guided Grasping. In: International Conference on Intelligent Robots and Systems, pp. 387–393. IEEE Press, Pittsburgh (1995)Google Scholar
  4. 4.
    Yuan, J.S.C.: A General Photogrammetric Method for Determining Object Position and Orientation. IEEE. Robo. Auto. 5, 129–142 (1989)CrossRefGoogle Scholar
  5. 5.
    A flexible New Technique for Camera Calibration. IEEE Trans. Pat. Anal. Mac Inte. 22, 1330–1334 (2000)Google Scholar
  6. 6.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge Univ. Press, Cambridge (2000)zbMATHGoogle Scholar
  7. 7.
    Lowe, D.G.: Three-dimensional Object Recognition From Single Two-dimensional Images. Arti. Inte. 31, 355–395 (1987)CrossRefGoogle Scholar
  8. 8.
    Horaud, R., Conio, B., Leboulleux, O., Lacolle, B.: An Analytic Solution for the Perspective 4-Point Problem. In: Computer Vision and Pattern Recognition, pp. 500–507. IEEE Press, San Diego (1989)Google Scholar
  9. 9.
    Yoon, Y., DeSouza, G.N., Kak, A.C.: Real-time Tracking and Pose Estimation for Industrial Objects using Geometric Features. In: Proceedings of the Int. Conference in Robotics and Automation, pp. 3473–3478. IEEE Press, Taiwan (2003)Google Scholar
  10. 10.
  11. 11.
    Ivlev, O., Martens, C., Graeser, A.: Rehabilitation Robots FRIEND-I and FRIEND-II with the Dexterous Lightweight Manipulator. Rest. Whee. Mobi. SCI. Reha. 17, 111–123 (2005)Google Scholar
  12. 12.
    Volosyak, I., Ivlev, O., Grser, A.: Rehabilitation Robot FRIEND II - The General Concept and Current Implementation. In: Proc. 9th International Conference on Rehabilitation Robotics, Chicago, pp. 540–544 (2005)Google Scholar
  13. 13.
  14. 14.
    Crane, C., Duffy, D., Kinematic Analysis, J.: of Robot Manipulators. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  15. 15.
    Pearson’s Correlation Coefficient, http://hsc.uwe.ac.uk/dataanalysis/quantInfAssPear.asp

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sai Krishna Vuppala
    • 1
  • Axel Gräser
    • 1
  1. 1.Institute of AutomationUniversity of BremenBremenGermany

Personalised recommendations