Black Holes, Black Rings, and their Microstates

  • Iosif Bena
  • Nicholas P. Warner
Part of the Lecture Notes in Physics book series (LNP, volume 755)


In this review article, we describe some of the recent progress towards the construction and analysis of three-charge configurations in string theory and supergravity. We begin by describing the Born-Infeld construction of three-charge supertubes with two dipole charges and then discuss the general method of constructing three-charge solutions in five dimensions. We explain in detail the use of these methods to construct black rings, black holes, as well as smooth microstate geometries with black hole and black ring charges, but with no horizon. We present arguments that many of these microstate geometries are dual to boundary states that belong to the same sector of the D1-D5-P CFT as the typical states. We end with an extended discussion of the implications of this work for the physics of black holes in string theory.


Black Hole Black Ring Giant Graviton Dipole Charge Black Hole Microstate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. W. Hawking, “Breakdown of predictability in gravitational collapse,” Phys. Rev. D 14, 2460 (1976).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    S. W. Hawking, “Particle creation by black holes,” Commun. Math. Phys. 43, 199 (1975) [Erratum-ibid. 46, 206 (1976)].MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    A. Strominger and C. Vafa, “Microscopic origin of the bekenstein-Hawking entropy,” Phys. Lett. B 379, 99 (1996) [arXiv:hep-th/9601029].ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] [arXiv:hep-th/9711200].zbMATHADSMathSciNetGoogle Scholar
  5. 5.
    S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from non-critical string theory,” Phys. Lett. B 428, 105 (1998) [arXiv:hep-th/9802109].MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253 (1998) [arXiv:hep-th/9802150].zbMATHMathSciNetGoogle Scholar
  7. 7.
    M. Cvetic and A. A. Tseytlin, “Solitonic strings and BPS saturated dyonic black holes,” Phys. Rev. D 53, 5619 (1996) [arXiv:hep-th/9512031].ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Cvetic and D. Youm, “Dyonic BPS saturated black holes of heterotic string on a six torus,” Phys. Rev. D 53, 584 (1996) [arXiv:hep-th/9507090].ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    O. Lunin and S. D. Mathur, “AdS/CFT duality and the black hole information paradox,” Nucl. Phys. B 623, 342 (2002) [arXiv:hep-th/0109154].zbMATHADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    O. Lunin and S. D. Mathur, “Statistical interpretation of Bekenstein entropy for systems with a stretched horizon,” Phys. Rev. Lett. 88, 211303 (2002) [arXiv:hep-th/0202072].ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    O. Lunin, J. M. Maldacena and L. Maoz, “Gravity solutions for the D1-D5 system with angular momentum,” arXiv:hep-th/0212210.Google Scholar
  12. 12.
    O. Lunin and S. D. Mathur, “The slowly rotating near extremal D1-D5 system as a ‘hot tube’,” Nucl. Phys. B 615, 285 (2001) [arXiv:hep-th/0107113].zbMATHADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    L. F. Alday, J. de Boer and I. Messamah, “The gravitational description of coarse grained microstates,” arXiv:hep-th/0607222.Google Scholar
  14. 14.
    A. Donos and A. Jevicki, “Dynamics of chiral primaries in AdS(3) x S**3 x T**4,” Phys. Rev. D 73, 085010 (2006) [arXiv:hep-th/0512017].ADSCrossRefGoogle Scholar
  15. 15.
    L. F. Alday, J. de Boer and I. Messamah, “What is the dual of a dipole?,” Nucl. Phys. B 746, 29 (2006) [arXiv:hep-th/0511246].zbMATHADSCrossRefGoogle Scholar
  16. 16.
    S. Giusto, S. D. Mathur and Y. K. Srivastava, “Dynamics of supertubes,” Nucl. Phys. B 754, 233 (2006) [arXiv:hep-th/0510235].zbMATHADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Taylor, “General 2 charge geometries,” JHEP 0603, 009 (2006) [arXiv:hep-th/0507223].ADSCrossRefGoogle Scholar
  18. 18.
    K. Skenderis and M. Taylor, “Fuzzball solutions and D1-D5 microstates,” arXiv:hep-th/0609154.Google Scholar
  19. 19.
    N. Iizuka and M. Shigemori, “A note on D1-D5-J system and 5D small black ring,” JHEP 0508, 100 (2005) [arXiv:hep-th/0506215].ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    M. Boni and P. J. Silva, “Revisiting the D1/D5 system or bubbling in AdS(3),” JHEP 0510, 070 (2005) [arXiv:hep-th/0506085].ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    D. Martelli and J. F. Morales, “Bubbling AdS(3),” JHEP 0502, 048 (2005) [arXiv:hep-th/0412136].ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Y. K. Srivastava, “Bound states of KK monopole and momentum,” arXiv:hep-th/0611124.Google Scholar
  23. 23.
    V. Balasubramanian, P. Kraus and M. Shigemori, “Massless black holes and black rings as effective geometries of the D1-D5 system,” Class. Quant. Grav. 22, 4803 (2005) [arXiv:hep-th/0508110].zbMATHADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    I. Kanitscheider, K. Skenderis and M. Taylor, “Holographic anatomy of fuzzballs,” arXiv:hep-th/0611171.Google Scholar
  25. 25.
    A. A. Tseytlin, “Extreme dyonic black holes in string theory,” Mod. Phys. Lett. A 11, 689 (1996) [arXiv:hep-th/9601177].zbMATHADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    A. A. Tseytlin, “Extremal black hole entropy from conformal string sigma model,” Nucl. Phys. B 477, 431 (1996) [arXiv:hep-th/9605091].zbMATHADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    S. D. Mathur, “The fuzzball proposal for black holes: An elementary review,” Fortsch. Phys. 53, 793 (2005) [arXiv:hep-th/0502050].zbMATHADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    S. D. Mathur, “The quantum structure of black holes,” Class. Quant. Grav. 23, R115 (2006) [arXiv:hep-th/0510180].zbMATHADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    B. C. Palmer and D. Marolf, “Counting supertubes,” JHEP 0406, 028 (2004) [arXiv:hep-th/0403025].CrossRefGoogle Scholar
  30. 30.
    V. S. Rychkov, “D1-D5 black hole microstate counting from supergravity,” JHEP 0601, 063 (2006) [arXiv:hep-th/0512053].ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    D. Bak, Y. Hyakutake and N. Ohta, “Phase moduli space of supertubes,” Nucl. Phys. B 696, 251 (2004) [arXiv:hep-th/0404104].zbMATHADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    D. Bak, Y. Hyakutake, S. Kim and N. Ohta, “A geometric look on the microstates of supertubes,” Nucl. Phys. B 712, 115 (2005) [arXiv:hep-th/0407253].zbMATHADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    D. Mateos and P. K. Townsend, “Supertubes,” Phys. Rev. Lett. 87, 011602 (2001) [arXiv:hep-th/0103030].ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    D. Mateos, S. Ng and P. K. Townsend, “Supercurves,” Phys. Lett. B 538, 366 (2002) [arXiv:hep-th/0204062].zbMATHADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    R. Emparan, D. Mateos and P. K. Townsend, “Supergravity supertubes,” JHEP 0107, 011 (2001) [arXiv:hep-th/0106012].ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    O. Lunin and S. D. Mathur, “Metric of the multiply wound rotating string,” Nucl. Phys. B 610, 49 (2001) [arXiv:hep-th/0105136].zbMATHADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    A. Sen, “Extremal black holes and elementary string states,” Mod. Phys. Lett. A 10, 2081 (1995) [arXiv:hep-th/9504147].ADSCrossRefGoogle Scholar
  38. 38.
    I. Bena and P. Kraus, “Three charge supertubes and black hole hair,” Phys. Rev. D 70, 046003 (2004) [arXiv:hep-th/0402144].ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    J. R. David, G. Mandal and S. R. Wadia, “Microscopic formulation of black holes in string theory,” Phys. Rept. 369, 549 (2002) [arXiv:hep-th/0203048].zbMATHADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N field theories, string theory and gravity,” Phys. Rept. 323, 183 (2000) [arXiv:hep-th/9905111].ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    S. Giusto, S. D. Mathur and A. Saxena, “Dual geometries for a set of 3-charge microstates,” Nucl. Phys. B 701, 357 (2004) [arXiv:hep-th/0405017].zbMATHADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    S. Giusto, S. D. Mathur and A. Saxena, “3-charge geometries and their CFT duals,” Nucl. Phys. B 710, 425 (2005) [arXiv:hep-th/0406103].zbMATHADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    S. Giusto and S. D. Mathur, “Geometry of D1-D5-P bound states,” Nucl. Phys. B 729, 203 (2005) [arXiv:hep-th/0409067].zbMATHADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    S. Giusto, S. D. Mathur and Y. K. Srivastava, “A microstate for the 3-charge black ring,” arXiv:hep-th/0601193.Google Scholar
  45. 45.
    O. Lunin, “Adding momentum to D1-D5 system,” JHEP 0404, 054 (2004) [arXiv:hep-th/0404006].ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    I. Bena and P. Kraus, “Microstates of the D1-D5-KK system,” Phys. Rev. D 72, 025007 (2005) [arXiv:hep-th/0503053].ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    I. Bena and N. P. Warner, “Bubbling supertubes and foaming black holes,” Phys. Rev. D 74, 066001 (2006) [arXiv:hep-th/0505166].ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    P. Berglund, E. G. Gimon and T. S. Levi, “Supergravity microstates for BPS black holes and black rings,” JHEP 0606, 007 (2006) [arXiv:hep-th/0505167].ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    A. Saxena, G. Potvin, S. Giusto and A. W. Peet, “Smooth geometries with four charges in four dimensions,” JHEP 0604 (2006) 010 [arXiv:hep-th/0509214].ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    S. Giusto, S. D. Mathur and Y. K. Srivastava, “A microstate for the 3-charge black ring,” arXiv:hep-th/0601193.Google Scholar
  51. 51.
    I. Bena, C. W. Wang and N. P. Warner, “The foaming three-charge black hole,” arXiv:hep-th/0604110.Google Scholar
  52. 52.
    V. Balasubramanian, E. G. Gimon and T. S. Levi, “Four dimensional black hole microstates: From D-branes to spacetime foam,” arXiv:hep-th/0606118.Google Scholar
  53. 53.
    I. Bena, C. W. Wang and N. P. Warner, “Mergers and typical black hole microstates,” JHEP 0611, 042 (2006) [arXiv:hep-th/0608217].ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    M. C. N. Cheng, “More bubbling solutions,” arXiv:hep-th/0611156.Google Scholar
  55. 55.
    J. Ford, S. Giusto and A. Saxena, “A class of BPS time-dependent 3-charge microstates from spectral flow,” arXiv:hep-th/0612227.Google Scholar
  56. 56.
    I. Bena and P. Kraus, “Microscopic description of black rings in AdS/CFT,” JHEP 0412, 070 (2004) [arXiv:hep-th/0408186].ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    A. Dabholkar, “Exact counting of black hole microstates,” Phys. Rev. Lett. 94, 241301 (2005) [arXiv:hep-th/0409148].ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    S. Ferrara and R. Kallosh, “Supersymmetry and attractors,” Phys. Rev. D 54, 1514 (1996) [arXiv:hep-th/9602136].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    H. Ooguri, A. Strominger and C. Vafa, “Black hole attractors and the topological string,” Phys. Rev. D 70, 106007 (2004) [arXiv:hep-th/0405146].ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    P. Kraus, “Lectures on black holes and the AdS(3)/CFT(2) correspondence,” arXiv:hep-th/0609074.Google Scholar
  61. 61.
    B. Pioline, “Lectures on on black holes, topological strings and quantum attractors,” Class. Quant. Grav. 23, S981 (2006) [arXiv:hep-th/0607227].ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    A. Sen, “How does a fundamental string stretch its horizon?,” JHEP 0505, 059 (2005) [arXiv:hep-th/0411255].ADSCrossRefGoogle Scholar
  63. 63.
    A. Dabholkar, F. Denef, G. W. Moore and B. Pioline, “Precision counting of small black holes,” JHEP 0510, 096 (2005) [arXiv:hep-th/0507014].ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    A. Dabholkar, F. Denef, G. W. Moore and B. Pioline, “Exact and asymptotic degeneracies of small black holes,” JHEP 0508, 021 (2005) [arXiv:hep-th/0502157].ADSMathSciNetCrossRefGoogle Scholar
  65. 65.
    A. Dabholkar, N. Iizuka, A. Iqubal, A. Sen and M. Shigemori, “Spinning strings as small black rings,” arXiv:hep-th/0611166.Google Scholar
  66. 66.
    A. Dabholkar, A. Sen and S. Trivedi, “Black hole microstates and attractor without supersymmetry,” arXiv:hep-th/0611143.Google Scholar
  67. 67.
    J. Polchinski and M. J. Strassler, “The string dual of a confining four-dimensional gauge theory,” arXiv:hep-th/0003136.Google Scholar
  68. 68.
    I. Bena and N. P. Warner, “One ring to rule them all æ and in the darkness bind them?,” Adv. Theor. Math. Phys. 9 (2005) 667–701 [arXiv:hep-th/0408106.]zbMATHMathSciNetGoogle Scholar
  69. 69.
    I. Bena, C. W. Wang and N. P. Warner, “Black rings with varying charge density,” JHEP 0603, 015 (2006) [arXiv:hep-th/0411072].ADSMathSciNetCrossRefGoogle Scholar
  70. 70.
    W. I. Taylor, “Adhering 0-branes to 6-branes and 8-branes,” Nucl. Phys. B 508, 122 (1997) [arXiv:hep-th/9705116].zbMATHCrossRefGoogle Scholar
  71. 71.
    I. Bena, “Splitting hairs of the three charge black hole,” Phys. Rev. D 70, 105018 (2004) [arXiv:hep-th/0404073].ADSMathSciNetCrossRefGoogle Scholar
  72. 72.
    J. D. Jackson, Classical Electrodynamics, Wiley, New York, NY, 1975.zbMATHGoogle Scholar
  73. 73.
    J. C. Breckenridge, R. C. Myers, A. W. Peet and C. Vafa, “D-branes and spinning black holes,” Phys. Lett. B 391, 93 (1997) [arXiv:hep-th/9602065].zbMATHADSMathSciNetCrossRefGoogle Scholar
  74. 74.
    C. A. R. Herdeiro, “Special properties of five dimensional BPS rotating black holes,” Nucl. Phys. B 582, 363 (2000) [arXiv:hep-th/0003063].zbMATHADSMathSciNetCrossRefGoogle Scholar
  75. 75.
    G. T. Horowitz and J. Polchinski, “A correspondence principle for black holes and strings,” Phys. Rev. D 55, 6189 (1997) [arXiv:hep-th/9612146].ADSMathSciNetCrossRefGoogle Scholar
  76. 76.
    H. S. Reall, “Higher dimensional black holes and supersymmetry,” Phys. Rev. D 68, 024024 (2003) [arXiv:hep-th/0211290].ADSMathSciNetCrossRefGoogle Scholar
  77. 77.
    H. Elvang, R. Emparan, D. Mateos and H. S. Reall, “A supersymmetric black ring,” Phys. Rev. Lett. 93, 211302 (2004) [arXiv:hep-th/0407065].ADSMathSciNetCrossRefGoogle Scholar
  78. 78.
    H. Elvang, R. Emparan, D. Mateos and H. S. Reall, “Supersymmetric black rings and three-charge supertubes,” Phys. Rev. D 71, 024033 (2005) [arXiv:hep-th/0408120].ADSMathSciNetCrossRefGoogle Scholar
  79. 79.
    J. P. Gauntlett and J. B. Gutowski, “General concentric black rings,” Phys. Rev. D 71, 045002 (2005) [arXiv:hep-th/0408122].ADSMathSciNetCrossRefGoogle Scholar
  80. 80.
    S. W. Hawking, “Gravitational Instantons,” Phys. Lett. A 60, 81 (1977).MathSciNetADSCrossRefGoogle Scholar
  81. 81.
    D. Gaiotto, A. Strominger and X. Yin, “New connections between 4D and 5D black holes,” JHEP 0602, 024 (2006) [arXiv:hep-th/0503217].ADSMathSciNetCrossRefGoogle Scholar
  82. 82.
    D. Gaiotto, A. Strominger and X. Yin, “5D black rings and 4D black holes,” JHEP 0602, 023 (2006) [arXiv:hep-th/0504126].ADSMathSciNetCrossRefGoogle Scholar
  83. 83.
    H. Elvang, R. Emparan, D. Mateos and H. S. Reall, “Supersymmetric 4D rotating black holes from 5D black rings,” JHEP 0508, 042 (2005) [arXiv:hep-th/0504125].ADSMathSciNetCrossRefGoogle Scholar
  84. 84.
    I. Bena, P. Kraus and N. P. Warner, “Black rings in Taub-NUT,” Phys. Rev. D 72, 084019 (2005) [arXiv:hep-th/0504142].ADSMathSciNetCrossRefGoogle Scholar
  85. 85.
    I. R. Klebanov and A. A. Tseytlin, “Gravity duals of supersymmetric SU(N) x SU(N+M) gauge theories,” Nucl. Phys. B 578, 123 (2000) [arXiv:hep-th/0002159].zbMATHADSMathSciNetCrossRefGoogle Scholar
  86. 86.
    I. R. Klebanov and M. J. Strassler, “Supergravity and a confining gauge theory: Duality cascades and χSB-resolution of naked singularities,” JHEP 0008, 052 (2000) [arXiv:hep-th/0007191].ADSMathSciNetCrossRefGoogle Scholar
  87. 87.
    A. W. Peet, “TASI lectures on black holes in string theory,” arXiv:hep-th/0008241.Google Scholar
  88. 88.
    R. Emparan and H. S. Reall, “Black rings,” Class. Quant. Grav. 23, R169 (2006) [arXiv:hep-th/0608012].zbMATHADSMathSciNetCrossRefGoogle Scholar
  89. 89.
    H. Elvang and P. Figueras, “Black Saturn,” arXiv:hep-th/0701035.Google Scholar
  90. 90.
    R. Emparan and H. S. Reall, “A rotating black ring in five dimensions,” Phys. Rev. Lett. 88, 101101 (2002) [arXiv:hep-th/0110260].ADSMathSciNetCrossRefGoogle Scholar
  91. 91.
    R. Emparan, “Rotating circular strings, and infinite non-uniqueness of black rings,” JHEP 0403, 064 (2004) [arXiv:hep-th/0402149].ADSMathSciNetCrossRefGoogle Scholar
  92. 92.
    H. Elvang and R. Emparan, “Black rings, supertubes, and a stringy resolution of black hole non-uniqueness,” JHEP 0311, 035 (2003) [arXiv:hep-th/0310008].ADSMathSciNetCrossRefGoogle Scholar
  93. 93.
    I. Bena, C. W. Wang and N. P. Warner, “Sliding rings and spinning holes,” JHEP 0605, 075 (2006) [arXiv:hep-th/0512157].ADSMathSciNetCrossRefGoogle Scholar
  94. 94.
    G. W. Gibbons and S. W. Hawking, “Gravitational Multi - Instantons,” Phys. Lett. B 78, 430 (1978).ADSCrossRefGoogle Scholar
  95. 95.
    G. W. Gibbons and P. J. Ruback, “The Hidden Symmetries of Multi-Center Metrics,” Commun. Math. Phys. 115, 267 (1988).zbMATHADSMathSciNetCrossRefGoogle Scholar
  96. 96.
    J. P. Gauntlett, J. B. Gutowski, C. M. Hull, S. Pakis and H. S. Reall, “All supersymmetric solutions of minimal supergravity in five dimensions,” Class. Quant. Grav. 20, 4587 (2003) [arXiv:hep-th/0209114].zbMATHADSMathSciNetCrossRefGoogle Scholar
  97. 97.
    R. Kallosh and B. Kol, “E(7) Symmetric Area of the Black Hole Horizon,” Phys. Rev. D 53, 5344 (1996) [arXiv:hep-th/9602014].ADSMathSciNetCrossRefGoogle Scholar
  98. 98.
    F. Denef, “Supergravity flows and D-brane stability,” JHEP 0008, 050 (2000) [arXiv:hep-th/0005049].ADSMathSciNetCrossRefGoogle Scholar
  99. 99.
    B. Bates and F. Denef, “Exact solutions for supersymmetric stationary black hole composites,” arXiv:hep-th/0304094.Google Scholar
  100. 100.
    F. Denef, “Quantum quivers and Hall/hole halos,” JHEP 0210, 023 (2002) [arXiv:hep-th/0206072].ADSMathSciNetCrossRefGoogle Scholar
  101. 101.
    K. Behrndt, G. Lopes Cardoso and S. Mahapatra, “Exploring the relation between 4D and 5D BPS solutions,” Nucl. Phys. B 732, 200 (2006) [arXiv:hep-th/0506251].zbMATHADSMathSciNetCrossRefGoogle Scholar
  102. 102.
    S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge, 1975.Google Scholar
  103. 103.
    V. Jejjala, O. Madden, S. F. Ross and G. Titchener, “Non-supersymmetric smooth geometries and D1-D5-P bound states,” Phys. Rev. D 71, 124030 (2005) [arXiv:hep-th/0504181].ADSMathSciNetCrossRefGoogle Scholar
  104. 104.
    V. Cardoso, O. J. C. Dias, J. L. Hovdebo and R. C. Myers, “Instability of non-supersymmetric smooth geometries,” Phys. Rev. D 73, 064031 (2006) [arXiv:hep-th/0512277].ADSMathSciNetCrossRefGoogle Scholar
  105. 105.
    J. P. Gauntlett and J. B. Gutowski, “Concentric black rings,” Phys. Rev. D 71, 025013 (2005) [arXiv:hep-th/0408010].ADSMathSciNetCrossRefGoogle Scholar
  106. 106.
    M. Cyrier, M. Guica, D. Mateos and A. Strominger, “Microscopic entropy of the black ring,” Phys. Rev. Lett. 94, 191601 (2005) [arXiv:hep-th/0411187].ADSMathSciNetCrossRefGoogle Scholar
  107. 107.
    J. M. Maldacena, A. Strominger and E. Witten, “Black hole entropy in M-theory,” JHEP 9712, 002 (1997) [arXiv:hep-th/9711053].ADSMathSciNetCrossRefGoogle Scholar
  108. 108.
    M. Bertolini and M. Trigiante, “Microscopic entropy of the most general four-dimensional BPS black hole,” JHEP 0010, 002 (2000) [arXiv:hep-th/0008201].ADSMathSciNetCrossRefGoogle Scholar
  109. 109.
    R. Dijkgraaf, J. M. Maldacena, G. W. Moore and E. P. Verlinde, “A black hole farey tail,” arXiv:hep-th/0005003.Google Scholar
  110. 110.
    P. Kraus and F. Larsen, “Partition functions and elliptic genera from supergravity,” arXiv:hep-th/0607138.Google Scholar
  111. 111.
    J. de Boer, M. C. N. Cheng, R. Dijkgraaf, J. Manschot and E. Verlinde, “A farey tail for attractor black holes,” JHEP 0611, 024 (2006) [arXiv:hep-th/0608059].CrossRefGoogle Scholar
  112. 112.
    G. T. Horowitz and H. S. Reall, “How hairy can a black ring be?,” Class. Quant. Grav. 22, 1289 (2005) [arXiv:hep-th/0411268].zbMATHADSMathSciNetCrossRefGoogle Scholar
  113. 113.
    M. Guica, L. Huang, W. Li and A. Strominger, JHEP 0610, 036 (2006) [arXiv:hep-th/0505188].ADSMathSciNetCrossRefGoogle Scholar
  114. 114.
    I. Bena and P. Kraus, “R**2 corrections to black ring entropy,” arXiv:hep-th/0506015.Google Scholar
  115. 115.
    R. Gopakumar and C. Vafa, “On the gauge theory/geometry correspondence,” Adv. Theor. Math. Phys. 3, 1415 (1999) [arXiv:hep-th/9811131].zbMATHMathSciNetGoogle Scholar
  116. 116.
    C. Vafa, “Superstrings and topological strings at large N,” J. Math. Phys. 42, 2798 (2001) [arXiv:hep-th/0008142].zbMATHADSMathSciNetCrossRefGoogle Scholar
  117. 117.
    H. Lin, O. Lunin and J. M. Maldacena, “Bubbling AdS space and 1/2 BPS geometries,” JHEP 0410, 025 (2004) [arXiv:hep-th/0409174].ADSMathSciNetCrossRefGoogle Scholar
  118. 118.
    F. Cachazo, K. A. Intriligator and C. Vafa, “A large N duality via a geometric transition,” Nucl. Phys. B 603, 3 (2001) [arXiv:hep-th/0103067].zbMATHADSMathSciNetCrossRefGoogle Scholar
  119. 119.
    M. Cvetic and F. Larsen, “Near horizon geometry of rotating black holes in five dimensions,” Nucl. Phys. B 531, 239 (1998) [arXiv:hep-th/9805097].zbMATHMathSciNetADSCrossRefGoogle Scholar
  120. 120.
    J. M. Maldacena and L. Susskind, “D-branes and fat black holes,” Nucl. Phys. B 475, 679 (1996) [arXiv:hep-th/9604042].zbMATHADSMathSciNetCrossRefGoogle Scholar
  121. 121.
    J. McGreevy, L. Susskind and N. Toumbas, “Invasion of the giant gravitons from anti-de Sitter space,” JHEP 0006, 008 (2000) [arXiv:hep-th/0003075].ADSMathSciNetCrossRefGoogle Scholar
  122. 122.
    M. T. Grisaru, R. C. Myers and O. Tafjord, “SUSY and Goliath,” JHEP 0008 (2000) 040 [arXiv:hep-th/0008015].Google Scholar
  123. 123.
    S. R. Das, A. Jevicki and S. D. Mathur, “Giant gravitons, BPS bounds and noncommutativity,” Phys. Rev. D 63, 044001 (2001) [arXiv:hep-th/0008088].ADSMathSciNetCrossRefGoogle Scholar
  124. 124.
    A. Hashimoto, S. Hirano and N. Itzhaki, “Large branes in AdS and their field theory dual,” JHEP 0008, 051 (2000) [arXiv:hep-th/0008016].ADSMathSciNetCrossRefGoogle Scholar
  125. 125.
    I. Bena and C. Ciocarlie, “Exact N=2 supergravity solutions with polarized branes,” Phys. Rev. D 70, 086005 (2004) [arXiv:hep-th/0212252].ADSMathSciNetCrossRefGoogle Scholar
  126. 126.
    I. Bena and R. Roiban, “N=1* in 5 dimensions: Dijkgraaf-Vafa meets Polchinski-Strassler,” JHEP 0311, 001 (2003) [arXiv:hep-th/0308013].ADSMathSciNetCrossRefGoogle Scholar
  127. 127.
    Y. K. Srivastava, “Perturbations of supertube in KK monopole background,” arXiv:hep-th/0611320.Google Scholar
  128. 128.
    A. Saxena, General 3-charge geometries in 4 dimensions (to appear)Google Scholar
  129. 129.
    S. R. Das and S. D. Mathur, “Excitations of D-strings, entropy and duality,” Phys. Lett. B 375, 103 (1996) [arXiv:hep-th/9601152].zbMATHADSMathSciNetCrossRefGoogle Scholar
  130. 130.
    J. M. Maldacena and L. Susskind, “D-branes and fat black holes,” Nucl. Phys. B 475, 679 (1996) [arXiv:hep-th/9604042].zbMATHADSMathSciNetCrossRefGoogle Scholar
  131. 131.
    C. G. Callan and J. M. Maldacena, “D-brane Approach to Black Hole Quantum Mechanics,” Nucl. Phys. B 472, 591 (1996) [arXiv:hep-th/9602043].zbMATHADSMathSciNetCrossRefGoogle Scholar
  132. 132.
    J. M. Maldacena, “Statistical entropy of near extremal five-branes,” Nucl. Phys. B 477, 168 (1996) [arXiv:hep-th/9605016].zbMATHADSMathSciNetCrossRefGoogle Scholar
  133. 133.
    U. H. Danielsson, A. Guijosa and M. Kruczenski, “Brane-antibrane systems at finite temperature and the entropy of black branes,” JHEP 0109, 011 (2001) [arXiv:hep-th/0106201].ADSMathSciNetCrossRefGoogle Scholar
  134. 134.
    R. Emparan and G. T. Horowitz, “Microstates of a neutral black hole in M theory,” Phys. Rev. Lett. 97, 141601 (2006) [arXiv:hep-th/0607023].ADSCrossRefGoogle Scholar
  135. 135.
    B. D. Chowdhury and S. D. Mathur, “Fractional brane state in the early universe,” arXiv:hep-th/0611330.Google Scholar
  136. 136.
    R. Gregory and R. Laflamme, “Black strings and p-branes are unstable,” Phys. Rev. Lett. 70, 2837 (1993) [arXiv:hep-th/9301052].zbMATHADSMathSciNetCrossRefGoogle Scholar
  137. 137.
    T. Harmark, V. Niarchos and N. A. Obers, “Instabilities of black strings and branes,” (Review) arXiv:hep-th/0701022.Google Scholar
  138. 138.
    B. D. Chowdhury, S. Giusto and S. D. Mathur, “A microscopic model for the black hole - black string phase transition,” arXiv:hep-th/0610069.Google Scholar
  139. 139.
    T. Harmark, K. R. Kristjansson, N. A. Obers and P. B. Ronne, “Three-charge black holes on a circle,” arXiv:hep-th/0606246.Google Scholar
  140. 140.
    L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, “The supergravity dual of N=1 super Yang-Mills theory,” Nucl. Phys. B 569, 451 (2000) [arXiv:hep-th/9909047].zbMATHADSMathSciNetCrossRefGoogle Scholar
  141. 141.
    I. Bena and D. J. Smith, “Towards the solution to the giant graviton puzzle,” Phys. Rev. D 71, 025005 (2005) [arXiv:hep-th/0401173].ADSMathSciNetCrossRefGoogle Scholar
  142. 142.
    V. Balasubramanian, B. Czech, V. Hubeny, K. Larjo, M. Rangamani and J. Simon, “Typicality versus thermality: An analytic distinction,” arXiv:hep-th/0701122.Google Scholar
  143. 143.
    V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, “The library of Babel: On the origin of gravitational thermodynamics,” JHEP 0512, 006 (2005) [arXiv:hep-th/0508023].ADSGoogle Scholar
  144. 144.
    J. M. Maldacena, “Eternal black holes in Anti-de-Sitter,” JHEP 0304, 021 (2003) [arXiv:hep-th/0106112].ADSMathSciNetCrossRefGoogle Scholar
  145. 145.
    D. Astefanesei, K. Goldstein and S. Mahapatra, “Moduli and (un)attractor black hole thermodynamics,” arXiv:hep-th/0611140.Google Scholar
  146. 146.
    A. Sen, “Black hole entropy function and the attractor mechanism in higher derivative gravity,” JHEP 0509, 038 (2005) [arXiv:hep-th/0506177].ADSCrossRefGoogle Scholar
  147. 147.
    P. Kraus and F. Larsen, “Holographic gravitational anomalies,” JHEP 0601, 022 (2006) [arXiv:hep-th/0508218].ADSMathSciNetCrossRefGoogle Scholar
  148. 148.
    P. Kraus and F. Larsen, “Microscopic black hole entropy in theories with higher derivatives,” JHEP 0509, 034 (2005) [arXiv:hep-th/0506176].ADSMathSciNetCrossRefGoogle Scholar
  149. 149.
    S. Giusto and S. D. Mathur, “Fuzzball geometries and higher derivative corrections for extremal holes,” Nucl. Phys. B 738, 48 (2006) [arXiv:hep-th/0412133].zbMATHADSMathSciNetCrossRefGoogle Scholar
  150. 150.
    K. Pilch and N. P. Warner, “N=1 supersymmetric renormalization group flows from IIB supergravity,” Adv. Theor. Math. Phys. 4, 627 (2002) [arXiv:hep-th/0006066].MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Service de Physique Théorique, CEA/SaclayFrance
  2. 2.Department of Physics and AstronomyUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations