Advertisement

Mutually Clock-Controlled Feedback Shift Registers Provide Resistance to Algebraic Attacks

  • Sultan Al Hinai
  • Lynn Margaret Batten
  • Bernard Colbert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4990)

Abstract

Algebraic attacks have been applied to several types of clock-controlled stream ciphers. However, to date there are no such attacks in the literature on mutually clock-controlled ciphers. In this paper, we present a preliminary step in this direction by giving the first algebraic analysis of mutually clock-controlled feedback shift register stream ciphers: the bilateral stop-and-go generator, A5/1, Alpha 1 and the MICKEY cipher. We show that, if there are no regularly clocked shift registers included in the system, mutually clock-controlled feedback shift register ciphers appear to be highly resistant to algebraic attacks. As a demonstration of the weakness inherent in the presence of a regularly clocked shift register, we present a simple algebraic attack on Alpha 1 based on only 29 keystream bits.

Keywords

stream cipher algebraic attacks clock-control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Hinai, S., Batten, L., Colbert, B., Wong, K.: Algebraic attacks on clock controlled stream ciphers. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 1–16. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Armknecht, F., Krause, M.: Algebraic attacks on combiners with memory. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 162–175. Springer, Heidelberg (2003)Google Scholar
  3. 3.
    Armknecht, F., Carlet, C., Gaborit, P., Kunzli, S., Meier, W., Ruatta, O.: Efficient Computation of Algebraic Immunity for Algebraic and Fast Algebraic Attacks. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 147–164. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Babbage, S., Dodd, M.: The stream cipher MICKEY (version 1). eSTREAM, ECRYPT Stream Cipher Project,2005/015 (2005)Google Scholar
  5. 5.
    Babbage, S., Dodd, M.: The stream cipher MICKEY-128 (version 1). eSTREAM, ECRYPT Stream Cipher Project,2005/016, (2005)Google Scholar
  6. 6.
    Babbage, S., Dodd, M.: The stream cipher MICKEY (version 2). eSTREAM, ECRYPT Stream Cipher Project (2006)Google Scholar
  7. 7.
    Batten, L.: Algebraic Attacks over GF(q). In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 84–91. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Berger, T., Minier, M.: Two Algebraic Attacks Against the F-FCSRs Using the IV Mode. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 143–154. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Briceno, M., Goldberg, I., Wagner, D.: A Pedagogical Implementation of A5/1, (May 1999), http://www.scard.orgGoogle Scholar
  10. 10.
    Chen, K., Simpson, L., Henricksen, M., Millan, W., Dawson, E.: A Complete Divide and Conquer Attack on the Alpha1 Stream Cipher. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 418–431. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Cho, J., Pieprzyk, J.: Algebraic attacks on SOBER-t32 and SOBER-t16 without stuttering. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 49–64. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Courtois, N.: Cryptanalysis of Sfinks. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 261–269. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Courtois, N.: Fast algebraic attacks on stream ciphers with linear feedback. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg (2003)Google Scholar
  14. 14.
    Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 346–359. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Didier, F.: Using Wiedemanna Algorithm to Compute the Immunity Against Algebraic and Fast Algebraic Attacks. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 236–250. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Komninos, N., Honary, B., Darnell, M.: An Efficient Stream Cipher for Mobile and Wireless Devices. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 294–300. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Lee, D., Kim, J., Hong, J., Han, J., Moon, D.: Algebraic Attacks on Summation Generators. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 34–48. Springer, Heidelberg (2004)Google Scholar
  18. 18.
  19. 19.
    Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of Boolean functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 474–491. Springer, Heidelberg (2004)Google Scholar
  20. 20.
    Strassen, V.: Gaussian Elimination is Not Optimal. Numerische Mathematik 13, 354–356 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Menicocci, R., Golić, J.: Edit Probability Correlation Attack on Bilateral Stop/Go Generator. In: Walker, M. (ed.) Cryptography and Coding - 6th IMA International Conference 1999. LNCS, vol. 1746, pp. 202–212. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  22. 22.
    Wong, K., Colbert, B., Batten, L., Al-Hinai, S.: Algebraic attacks on clock controlled cascade ciphers. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 32–47. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Zeng, K., Yang, C.H., Rao, T.R.N.: Large primes in stream-cipher cryptography. In: Seberry, J., Pieprzyk, J.P. (eds.) AUSCRYPT 1990. LNCS, vol. 453, pp. 194–205. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  24. 24.
    Zhang, X., Pieprzyk, J., Zheng, Y.: On Algebraic Immunity and Annihilators. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 65–80. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sultan Al Hinai
    • 1
  • Lynn Margaret Batten
    • 2
  • Bernard Colbert
    • 2
  1. 1.Queensland University of TechnologyBrisbaneAustralia
  2. 2.Deakin UniversityMelbourneAustralia

Personalised recommendations