Computing Hilbert Modular Forms over Fields with Nontrivial Class Group

  • Lassina Dembélé
  • Steve Donnelly
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5011)


We exhibit an algorithm for the computation of Hilbert modular forms over an arbitrary totally real number field of even degree, extending results of the first author. We present some new instances of the conjectural Eichler-Shimura construction for totally real number fields over the fields \({\mathbb{Q}}(\sqrt{10})\) and \({\mathbb{Q}}(\sqrt{85})\) and their Hilbert class fields, and in particular some new examples of modular abelian varieties with everywhere good reduction over those fields.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blasius, D.: Elliptic curves, Hilbert modular forms, and the Hodge conjecture. In: Hida, Ramakrishnan, Shahidi (eds.) Contributions to Automorphic forms, Geometry, and Number Theory, pp. 83–103. Johns Hopkins Univ. Press, Baltimore (2004)Google Scholar
  2. 2.
    Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3-4), 235–265 (1997)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Cremona, J., Lingham, M.: Finding all elliptic curves with good reduction outside a given set of primes. Experimental Math. (to appear)Google Scholar
  4. 4.
    Dembélé, L.: Explicit computations of Hilbert modular forms on ℚ . Experimental Math. 14, 457–466 (2005)MATHGoogle Scholar
  5. 5.
    Dembélé, L.: Quaternionic M-symbols, Brandt matrices and Hilbert modular forms. Math. Comp. 76, 1039–1057 (2007)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Dembélé, L.: On the computation of algebraic modular forms (submitted)Google Scholar
  7. 7.
    Dembélé, L., Diamond, F., Roberts, D.: Examples and numerical evidence for the Serre conjecture over totally real number fields (in preparation)Google Scholar
  8. 8.
    Eichler, M.: On theta functions of real algebraic number fields. Acta Arith. 33, 269–292 (1977)MathSciNetMATHGoogle Scholar
  9. 9.
    Gelbart, S.: Automorphic forms on adele groups. In: Annals of Maths. Studies, vol. 83, Princeton Univ. Press, Princeton (1975)Google Scholar
  10. 10.
    Jacquet, H., Langlands, R.P.: Automorphic forms on GL(2). Lectures Notes in Math, vol. 114. Springer, Berlin, New York (1970)MATHGoogle Scholar
  11. 11.
    Kagawa, T.: Elliptic curves with everywhere good reduction over real quadratic fields. Ph. D Thesis, Waseda University (1998)Google Scholar
  12. 12.
    Kisin, M.: Modularity of 2-adic Barsotti-Tate representations (preprint),
  13. 13.
    Khare, C., Wintenberger, J.-P.: On Serre’s conjecture for 2-dimensional mod prepresentations of the absolute Galois group of the rationals. Annals of Mathematics (to appear),
  14. 14.
    Kirschmer, M.: Konstruktive Idealtheorie in Quaternionenalgebren. Diplom Thesis, Universität Ulm (2005)Google Scholar
  15. 15.
    Knapp, A.W.: Elliptic Curves. Mathematical Notes, vol. 40. Princeton University Press, Princeton (1992)Google Scholar
  16. 16.
    Oda, T.: Periods of Hilbert Modular Surfaces. Progress in Mathematics, vol. 19. Birkhäuser, Boston, Mass (1982)Google Scholar
  17. 17.
    Okada, K.: Hecke eigenvalues for real quadratic fields. Experiment. Math. 11, 407–426 (2002)MathSciNetMATHGoogle Scholar
  18. 18.
    Schein, M.: Weights in Serre’s conjecture for Hilbert modular forms: the ramified case. Israel Journal of Mathematics (to appear),
  19. 19.
    Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions. Kanô Memorial Lectures, No. 1. Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton (1971)Google Scholar
  20. 20.
    Skinner, C.M., Wiles, A.J.: Residually reducible representations and modular forms. Inst. Hautes Études Sci. Publ. Math. (89), 5–126 (1999)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Socrates, J., Whitehouse, D.: Unramified Hilbert modular forms, with examples relating to elliptic curves. Pacific J. Math. 219, 333–364 (2005)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Taylor, R.: On Galois representations associated to Hilbert modular forms. Invent. Math. 98, 265–280 (1989)CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Voight, J.: Quadratic forms and quaternion algebras: Algorithms and arithmetic. PhD thesis, University of California, Berkeley (2005)Google Scholar
  24. 24.
    Zhang, S.: Heights of Heegner points on Shimura curves. Ann. of Math. 153(2), 27–147 (2001)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Lassina Dembélé
    • 1
  • Steve Donnelly
    • 2
  1. 1.Institut für Experimentelle MathematikEssenGermany
  2. 2.School of Mathematics and Statistics F07University of SydneySydneyAustralia

Personalised recommendations