Advertisement

Wavelet-Based 3-D Multifractal Spectrum with Applications in Breast MRI Images

  • Gordana Derado
  • Kichun Lee
  • Orietta Nicolis
  • F. DuBois Bowman
  • Mary Newell
  • Fabrizio F. Rugger
  • Brani Vidakovic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4983)

Abstract

Breast cancer is the second leading cause of death in women in the United States. Breast Magnetic Resonance Imaging (BMRI) is an emerging tool in breast cancer diagnostics and research, and it is becoming routine in clinical practice. Recently, the American Cancer Society (ACS) recommended that women at very high risk of developing breast cancer have annual BMRI exams, in addition to annual mammograms, to increase the likelihood of early detection. (Saslow et al. [20] ). Many medical images demonstrate a certain degree of self-similarity over a range of scales. The multifractal spectrum (MFS) summarizes possibly variable degrees of scaling in one dimensional signals and has been widely used in fractal analysis. In this work, we develop a generalization of MFS to three dimensions and use dynamics of the scaling as discriminatory descriptors for the classification of BMRI images to benign and malignant. Methodology we propose was tested using breast MRI images for four anonymous subjects (two cancer, and two cancer-free cases). The dataset consists of BMRI scans obtained on a 1.5T GE Signa MR (with VIBRANT) scanner at Emory University. We demonstrate that meaningful descriptors show potential for classifying inference.

Keywords

Support Vector Machine American Cancer Society Fractional Brownian Motion Hurst Exponent Breast Magnetic Resonance Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alterson, R., Plewes, D.B.: Bilateral symmetry analysis of breast MRI. Phys. Med. Biol. 48, 3431–3443 (2003)CrossRefGoogle Scholar
  2. 2.
    Bocchi, L., Coppini, G., Nori, J., Valli, G.: Detection and clustered microcalcifications in mammograms using fractals models and neural networks. Medical Engineering & Physics 26, 303–312 (2004)CrossRefGoogle Scholar
  3. 3.
    Buckheit, J., Donoho, D.: Wavelab and reproducible research. Technical report, Stanford University (1995)Google Scholar
  4. 4.
    Chen, C., Daponte, J., Fox, M.: Fractal features analysis and classification in medical imaging. IEEE Transactions on Medical Imaging 8, 133–142 (1989)CrossRefGoogle Scholar
  5. 5.
    Derado, G., Bowman, F.D., Patel, R., Newell, M., Vidakovic, B.: Wavelet Image Interpolation (WII): A Wavelet-based Approach to Enhancement of Digital Mammography Images. In: Măndoiu, I., Zelikovsky, A. (eds.) ISBRA 2007. LNCS (LNBI), vol. 4463, pp. 203–214. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Curpen, B.N., Sickles, E.A., Sollitto, R.A.: The comparative value of mammographic screening for women 40-49 years old versus women 50-59 years old. AJR 164, 1099–1103 (1995)Google Scholar
  7. 7.
    Delbeke, L.: Wavelet based estimators for the Hurst parameter of a self-similar process, PhD Thesis, KU Leuven, Belgium (1998)Google Scholar
  8. 8.
    Ellis, R.: Large deviations for a general class of random vectors. Ann. Prob. 12, 1–12 (1984)zbMATHCrossRefGoogle Scholar
  9. 9.
    Gonçalves, P., Riedi, R., Baraniuk, R.: Simple statistical analysis of wavelet-based multifractal spectrum estimation. In: Proceedings 32nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA (1998)Google Scholar
  10. 10.
    Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., Thun, M.J.: Cancer Statistics. CA Cancer J. Clin. 57, 43–66 (2007)Google Scholar
  11. 11.
    Kestener, P., Lina, J.M., Saint-Jean, P., Arneodo, A.: Wavelet-based multifractal formalism to assist in diagnosis in digitized mammograms. Image Anal Stereol. 20, 169–174 (2001)zbMATHGoogle Scholar
  12. 12.
    Kuklinski, W.S.: Utilization of fractal image models in medical image processing. Fractals 2, 363–369 (1994)zbMATHCrossRefGoogle Scholar
  13. 13.
    Mainardi, L., Passera, K.M., Lucesoli, A., Vergnaghi, D., Trecate, G., Setti, E., Musumeci, R., Cerutti, S.: A Nonrigid Registration of MR Breast Images Using Complex-valued Wavelet Transform. Journal of Digital Imaging (published online February 28, 2007)Google Scholar
  14. 14.
    Moloney, K.P., Jacko, J.A., Vidakovic, B., Sainfort, F., Leonard, V.K., Shi, B.: Leveraging data complexity: Pupillary behavior of older adults with visual impairment during HCI. ACM Trans. Comput.-Hum. Interact. 13(3), 376–402 (2006)CrossRefGoogle Scholar
  15. 15.
    Morales, C.J.: Wavelet-based multifractal spectra estimation: Statistical aspects and applications. Ph.D thesis. Boston University Graduate School of Arts and Sciences (2002)Google Scholar
  16. 16.
    Priebe, C.E., Solka, J.L., Lorey, R.A., Rogers, G.W., Poston, W.L., Kallergi, M., Quian, W., Clarke, L.P., Clark, R.A.: The application of fractal analysis to mammographic tissue classification. Cancer letters 77, 183–189 (1994)CrossRefGoogle Scholar
  17. 17.
    Riedi, R.: Multifractal Processes in Theory and Applications of Long-Range Dependence. In: Doukhan, P., Oppenheim, G., Taqqu, M.S. (eds.), pp. 625–716 (in Press, 2002)Google Scholar
  18. 18.
    Riedi, R.H.: An Introduction to multifractals, Tech Report, Dept. Statistics, Rice University (1999)Google Scholar
  19. 19.
    Riedi, R., Crouse, M.S., Ribeiro, V., Baraniuk, R.G.: A multifractal wavelet model with applications to TCP network traffic. IEEE Trans. Info. Theory (special issue on multiscale statistical signal analysis and its applications) (1999)Google Scholar
  20. 20.
    Saslow, D., Boetes, C., Burke, W., Harms, S., Leach, M.O., Lehman, C.D., Morris, E., Pisano, E., Schnall, M., Sener, S., Smith, R.A., Warner, E., Yaffe, M., Andrews, K.S., Russell, C.A.: MD for the American Cancer Society Breast Cancer Advisory Group. American Cancer Society Guidelines for Breast Screening with MRI as an Adjunct to Mammography. CA Cancer J. Clin. 57, 75–89 (2007)CrossRefGoogle Scholar
  21. 21.
    Smart, C.R., Hendrick, R.E., Rutledge, J.H., Smith, R.A.: Benefit of mammography screening in women ages 40 to 49 years: current evidence from randomized controlled trials. Cancer 75, 1619–1626 (1995)CrossRefGoogle Scholar
  22. 22.
    Vidakovic, B.: Statistical Modeling by Wavelets. Wiley, NY, USA (1999)zbMATHGoogle Scholar
  23. 23.
    Yoshida, H., Doi, K., Nishikawa, R.M.L., Giger, M., Schmidt, R.A.: An improved computer-assisted diagnosis scheme using wavelet transform for detecting clustered microcalcifications in digital mammograms. Acad. Radiol. 3, 621–627 (1996)CrossRefGoogle Scholar
  24. 24.
    Zheng, B., Qian, W., Clarke, L.P.: Digital mammography: mixed feature neural network with spectral entropy decision for detection of microcalcifications. Med. Img. 15, 589–597 (1996)Google Scholar
  25. 25.
    Shi, B., Vidakovic, B., Katul, G.G., Albertson, J.D.: Assessing the effects of atmospheric stability on the fine structure of surface layer turbulence using local and global multiscale approaches. Physics of Fluids 17 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Gordana Derado
    • 1
  • Kichun Lee
    • 3
  • Orietta Nicolis
    • 4
  • F. DuBois Bowman
    • 1
  • Mary Newell
    • 2
  • Fabrizio F. Rugger
    • 5
  • Brani Vidakovic
    • 3
  1. 1.Emory UniversityAtlanta 
  2. 2.Winship Cancer InstituteAtlanta 
  3. 3.Georgia Institute of Technology and Emory UniversityAtlanta 
  4. 4.University of BergamoItaly
  5. 5.CNR MilanoItaly

Personalised recommendations