Invited Keynote Talk: Computing P-Values for Peptide Identifications in Mass Spectrometry

  • Nikita Arnold
  • Tema Fridman
  • Robert M. Day
  • Andrey A. Gorin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4983)

Abstract

Mass-spectrometry (MS) is a powerful experimental technology for ”sequencing” proteins in complex biological mixtures. Computational methods are essential for the interpretation of MS data, and a number of theoretical questions remain unresolved due to intrinsic complexity of the related algorithms. Here we design an analytical approach to estimate the confidence values of peptide identification in so-called database search methods. The approach explores properties of mass tags — sequences of mass values (m1 m2 ... mn), where individual mass values are distances between spectral lines. We define p-function — the probability of finding a random match between any given tag and a protein database — and verify the concept with extensive tag search experiments. We then discuss p-function properties, its applications for finding highly reliable matches in MS experiments, and a possibility to analytically evaluate properties of SEQUEST X-correlation function.

Keywords

mass-spectrometry database search confidence values 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hirosawa, M., Hoshida, M., Ishikawa, M., Toya, T.: MASCOT: multiple alignment system for protein sequences based on three-way dynamic programming. Comput. Appl. Biosci. 9, 161–167 (1993)Google Scholar
  2. 2.
    Eng, J.K., McCormack, A.L., Yates, J.R.: An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of the American Society for Mass Spectrometry 5, 976–989 (1994)CrossRefGoogle Scholar
  3. 3.
    Yates III, J.R., Eng, J.K., McCormack, A.L.: Mining genomes: correlating tandem mass spectra of modified and unmodified peptides to sequences in nucleotide databases. Anal. Chem. 67, 3202–3210 (1995)CrossRefGoogle Scholar
  4. 4.
    Tabb, D.L., McDonald, W.H., Yates III, J.R.: DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J. Proteome Res. 1, 21–26 (2002)CrossRefGoogle Scholar
  5. 5.
    Perkins, D.N., Pappin, D.J., Creasy, D.M., Cottrell, J.S.: Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999)CrossRefGoogle Scholar
  6. 6.
    Keller, A., Nesvizhskii, A.I., Kolker, E., Aebersold, R.: Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392 (2002)CrossRefGoogle Scholar
  7. 7.
    Nesvizhskii, A.I., Keller, A., Kolker, E., Aebersold, R.: A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658 (2003)CrossRefGoogle Scholar
  8. 8.
    Kapp, E.A., Schutz, F., Connolly, L.M., Chakel, J.A., Meza, J.E., Miller, C.A., Fenyo, D., Eng, J.K., Adkins, J.N., Omenn, G.S., Simpson, R.J.: An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: sensitivity and specificity analysis. Proteomics 5, 3475–3490 (2005)CrossRefGoogle Scholar
  9. 9.
    Higdon, R., Hogan, J.M., Van Belle, G., Kolker, E.: Randomized sequence databases for tandem mass spectrometry peptide and protein identification. Omics 9, 364–379 (2005)CrossRefGoogle Scholar
  10. 10.
    Higdon, R., Hogan, J.M., Kolker, N., van Belle, G., Kolker, E.: Experiment-specific estimation of peptide identification probabilities using a randomized database. Omics 11, 351–365 (2007)CrossRefGoogle Scholar
  11. 11.
    Huttlin, E.L., Hegeman, A.D., Harms, A.C., Sussman, M.R.: Prediction of error associated with false-positive rate determination for peptide identification in large-scale proteomics experiments using a combined reverse and forward peptide sequence database strategy. J. Proteome Res. 6, 392–398 (2007)CrossRefGoogle Scholar
  12. 12.
    Qian, W.J., Liu, T., Monroe, M.E., Strittmatter, E.F., Jacobs, J.M., Kangas, L.J., Petritis, K., Camp II, D.G., Smith, R.D.: Probability-based evaluation of peptide and protein identifications from tandem mass spectrometry and SEQUEST analysis: the human proteome. J. Proteome Res. 4, 53–62 (2005)CrossRefGoogle Scholar
  13. 13.
    Elias, J.E., Gygi, S.P.: Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007)CrossRefGoogle Scholar
  14. 14.
    Choi, H., Ghosh, D., Nesvizhskii, A.I.: Statistical validation of peptide identifications in large-scale proteomics using the target-decoy database search strategy and flexible mixture modeling. J. Proteome Res. 7, 286–292 (2008)CrossRefGoogle Scholar
  15. 15.
    Mann, M., Wilm, M.: Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal. Chem. 66, 4390–4399 (1994)CrossRefGoogle Scholar
  16. 16.
    Sunyaev, S., Liska, A.J., Golod, A., Shevchenko, A., Shevchenko, A.: MultiTag: multiple error-tolerant sequence tag search for the sequence-similarity identification of proteins by mass spectrometry. Anal. Chem. 75, 1307–1315 (2003)CrossRefGoogle Scholar
  17. 17.
    Frahm, J.L., Howard, B.E., Heber, S., Muddiman, D.C.: Accessible proteomics space and its implications for peak capacity for zero-, one- and two-dimensional separations coupled with FT-ICR and TOF mass spectrometry. J. Mass Spectrom 41, 281–288 (2006)CrossRefGoogle Scholar
  18. 18.
    Mann, M.: Useful tables of possible and probable peptide masses. In: 43rd ASMS Conference on Mass Spectrometry and Allied Topics, Am. Soc. Mass Spectr., Atlanta (1995)Google Scholar
  19. 19.
    Zubarev, R.A., Hakansson, P., Sundqvist, B.: Accuracy Requirements for Peptide Characterization by Monoisotopic Molecular Mass Measurements. Anal. Chem. 68, 4060–4063 (1996)CrossRefGoogle Scholar
  20. 20.
    Kampen, N.G.v.: Stochastic processes in physics and chemistry. North-Holland, Amsterdam, New York (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Nikita Arnold
    • 1
    • 2
  • Tema Fridman
    • 1
  • Robert M. Day
    • 1
  • Andrey A. Gorin
    • 1
  1. 1.Computer Science and Mathematics Division, Oak Ridge National LaboratoryComputational Biology InstituteOak Ridge
  2. 2.Soft Matter Physics/Experimental PhysicsJ. Kepler UniversityLinzAustria

Personalised recommendations