Advertisement

Half-Sweep Algebraic Multigrid (HSAMG) Method Applied to Diffusion Equations

  • J. Sulaiman
  • M. Othman
  • M. K. Hasan

Abstract

In previous studies, the efficiency of the Half-Sweep Multigrid (HSMG) method has been shown to be very fast as compared with the standard multigrid method. This is due to its ability to reduce computational complexity of the standard method. In this paper, the primary goal is to propose the Half-Sweep Algebraic Multigrid (HSAMG) method using the HSCN finite difference scheme for solving two-dimensional diffusion equations. The formulation of the HSAMG scheme is derived by borrowing the concept of the HSMG method. Results on some numerical experiments conducted show that the HSAMG method is superior to the standard algebraic method.

Keywords

Multigrid Method Triangle Element Waveform Relaxation Share Memory Multiprocessor Algebraic Multigrid Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdullah, A. R.: The Four Point Explicit Decoupled Group (EDG) Method: A Fast Poisson Solver. International Journal Computer Mathematics, 38, 61–70 (1991)zbMATHCrossRefGoogle Scholar
  2. 2.
    Ali, N. H. M, Yunus, Y., Othman, M.: A New Nine Point Multigrid V-Cycle Algorithm. Sains Malaysiana, 31, 135–147 (2002)Google Scholar
  3. 3.
    Brandt, A.: Multi-Level Adaptive Technique (MLAT) for fast numerical solution to boundary value problems. Proceeding of the Third International Conference on Numerical Methods in Fluid Mechanics, 18, 82–89 (1973)CrossRefGoogle Scholar
  4. 4.
    Brandt, A.: Guide to multigrid development. In. Hackbusch, W, Trottenberg, U. Multigrid Methods. Lecture Notes in Mathematics, 960, 312–320 (1982)Google Scholar
  5. 5.
    Brandt, A.: Algebraic multigrid theory: The symmetric case. Applied Mathematics and Computation, 19, 23–56 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Brandt, A., Greenwald, J.: Parabolic multigrid revisited. International Series of Numerical Mathematics, 98, 143–154 (1991)MathSciNetGoogle Scholar
  7. 7.
    Briggs, W. L.: A multigrid tutorial. Pennsylvania: Lancaster Press. (1987)zbMATHGoogle Scholar
  8. 8.
    Chang, Q., Wong, Y. S., Fu, H.: On the Algebraic Multigrid method. Journal of Computational Physics, 125, 279-292 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fletcher, C. A. J.: The Galerkin method: An introduction. In. Noye, J. (pnyt.). Numerical Simulation of Fluid Motion, North-Holland Publishing Company, Amsterdam 113–170 (1978)Google Scholar
  10. 10.
    Fletcher, C. A. J.: Computational Galerkin method. Springer Series in Computational Physics. Springer-Verlag, New York (1984)Google Scholar
  11. 11.
    Gupta, M. M., Kouatchou, J., Zhang, J.: A Compact Multigrid solver for convection-diffusion equations. Journal of Computational Physics, 132(1), 166–172 (1997)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Gupta, M. M., Kouatchou, J., Zhang, J.: Comparison of second and fourth order discretizations for multigrid Poisson solvers. Journal of Computational Physics, 132(2), 226–232 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hackbusch, W.: Introduction to Multi-grid methods for the numerical solution of boundary value problems. In. Essers, J.A. Computational Methods for Turbulent, Transonic and Viscous Flows: Springer-Verlag, Berlin, 45–92 (1983)Google Scholar
  14. 14.
    Hackbusch, W.: Parabolic Multigrid. Computing Methods in Applied Sciences and Engineering, VI. North-Holland, 189–197 (1984)Google Scholar
  15. 15.
    Hackbusch, W.: Multi-grid methods and applications. Springer Series in Computational Mathematics 4. Springer-Verlag, Berlin (1985)Google Scholar
  16. 16.
    Hackbusch, W.: Iterative solution of large sparse systems of equations. Springer-Verlag, New York (1995)Google Scholar
  17. 17.
    Ibrahim, A., Abdullah, A. R.: Solving the two-dimensional diffusion equation by the four point explicit decoupled group (EDG) iterative method. International Journal Computer Mathematics, 58, 253–256 (1995)zbMATHCrossRefGoogle Scholar
  18. 18.
    Lewis, P. E., Ward, J. P.: The Finite Element Method: Principles and Applications. Addison-Wesley Publishing Company, Wokingham (1991)zbMATHGoogle Scholar
  19. 19.
    Othman, M., Abdullah, A. R.: The Halfsweeps Multigrid method as a fast Multigrid Poisson solver. International Journal Computer Mathematics, 69, 319–329 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Othman, M., Sulaiman, J., Abdullah, A. R.: A parallel Halfsweep Multigrid algorithm on the Shared Memory Multiprocessors. Malaysian Journal of Computer Science, 13(2), 1–6 (2000)Google Scholar
  21. 21.
    Stüben, K., Trottenberg, U.: Multigrid methods: Fundamental algorithms, model problem analysis and applications. In. Hackbusch, W, Trottenberg, U. Multigrid Methods. Lecture Notes in Mathematics, 960, 1–176 (1982)Google Scholar
  22. 22.
    Sulaiman, J., Hasan, M. K., Othman, M.: The Half-Sweep Iterative Alternating Decomposition Explicit (HSIADE) method for diffusion equations. LNCS 3314, Springer-Verlag, Berlin 57–63 (2004)Google Scholar
  23. 23.
    Sulaiman, J., Othman, M., Hasan, M. K.: Quarter-Sweep Iterative Alternating Decomposition Explicit algorithm applied to diffusion equations. Intern. Journal of Computer Mathematics, 81, 1559-1565 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Vandewalle, S., Piessens, R.: Multigrid waveform relaxation for solving parabolic partial differential equations. International Series of Numerical Mathematics, 98, 377–388 (1991)MathSciNetGoogle Scholar
  25. 25.
    Vichnevetsky, R.: Computer Methods for Partial Differential Equations, Vol I. New Jersey: Prentice-Hall (1981)Google Scholar
  26. 26.
    Wesseling, P.: An introduction to Multigrid methods. John Wiley and Son, New York (1992)zbMATHGoogle Scholar
  27. 27.
    Yousif, W. S., Evans, D. J.: Explicit De-coupled Group Iterative Methods and Their Parallel Implementations, Parallel Algorithms and Applications, 7, 53–71 (1995)zbMATHGoogle Scholar
  28. 28.
    Zienkiewicz, O. C.: Why finite elements? In. Gallagher, R. H., Oden, J. T., Taylor, C., Zienkiewicz, O. C. (Eds). Finite Elements In Fluids-Volume, John Wiley & Sons, London 1, 1–23 (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • J. Sulaiman
    • 1
  • M. Othman
    • 2
    • 4
  • M. K. Hasan
    • 3
  1. 1.School of Science and TechnologyUniversiti Malaysia SabahKota Kinabalu, SabahMalaysia
  2. 2.Department of Communication Technology and NetworkUniversity Putra MalaysiaSelangor D.E.Malaysia
  3. 3.Department of Industrial Computing, Faculty of Information Science and TechnologyUniversiti Kebangsaan MalaysiaSelangorMalaysia
  4. 4.Lab of Computational Science and Informatics, Institutes of Mathematical ResearchUniversity Putra MalaysiaMalaysia

Personalised recommendations