Si/SiGe Quantum Devices, Quantum Wells, and Electron-Spin Coherence

  • J. L. Truitt
  • K. A. Slinker
  • K. L. M. Lewis
  • D. E. Savage
  • Charles Tahan
  • L. J. Klein
  • J. O. Chu
  • P. M. Mooney
  • A. M. Tyryshkin
  • D. W. van der Weide
  • Robert Joynt
  • S. N. Coppersmith
  • Mark Friesen
  • M. A. Eriksson
Part of the Topics in Applied Physics book series (TAP, volume 115)

Abstract

Silicon quantum devices have progressed rapidly over the past decade, driven by recent interest in spintronics and quantum computing. Spin coherence has emerged as a leading indicator of suitable devices for quantum applications. In particular, the technique of electron-spin resonance (ESR) has proven powerful and flexible for probing both the magnitude and the nature of spin scattering, when compared to theoretical predictions. Here, we provide a short review of silicon quantum devices, focusing on silicon/silicon-germanium quantum wells. Our review touches on the fabrication and lithography of devices including quantum dots, and the development of Schottky top gates, which have recently enabled the formation of few-electron quantum dots with integrated charge sensors. We discuss recent proposals for quantum-dot quantum computing, as well as spin- and valley-scattering effects, which may limit device performance. Recent ESR studies suggest that spin scattering in high-mobility Si/SiGe two-dimensional electron gases may be dominated by the D’yakonov and Perel’ mechanism arising from Bychkov–Rashba spin-orbit coupling. These results rely on theoretical predictions for the dependence of the coherence time T2* on the orientation of an external applied magnetic field. Here, we perform ESR experiments on a series of samples fabricated by different methods, including samples recently used to obtain few-electron quantum dots. While we observe some similarities with recent experiments, we find that for five out of six samples, the angular dependence of T2* was far larger than the theoretical predictions. We discuss possible causes for this discrepancy, but conclude that the theoretical understanding of these samples is not yet complete.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Žutić, J. Fabian, S. Das Sarma, Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004) ADSCrossRefGoogle Scholar
  2. 2.
    S. Datta, B. Das, Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990) ADSCrossRefGoogle Scholar
  3. 3.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000) MATHGoogle Scholar
  4. 4.
    C. Poole, Electron Spin Resonance, 2nd edn. (Dover, Minneola, 1996) Google Scholar
  5. 5.
    C.P. Slichter, Principles of Magnetic Resonance, 2nd edn. (Springer, Berlin, 1978) Google Scholar
  6. 6.
    D. Stein, K. von Klitzing, G. Weimann, Electron spin resonance on GaAs-AlxGa1−xAs heterostructures. Phys. Rev. Lett. 51, 130–133 (1983) ADSCrossRefGoogle Scholar
  7. 7.
    M. Ciorga, A.S. Sachrajda, P. Hawrylak, C. Gould, P. Zawadzki, S. Jullian, Y. Feng, Z. Wasilewski, Addition spectrum of a lateral dot from Coulomb and spin blockade spectroscopy. Phys. Rev. B 61, R16315–R16318 (2000) ADSCrossRefGoogle Scholar
  8. 8.
    T. Fujisawa, D.G. Austing, Y. Tokura, Y. Hirayama, S. Tarucha, Allowed and forbidden transitions in artificial hydrogen and helium atoms. Nature 419, 278–281 (2002) ADSCrossRefGoogle Scholar
  9. 9.
    J.M. Elzerman, R. Hanson, L.H. Willems van Beveren, B. Witkamp, L.M.K. Vandersypen, L.P. Kouwenhoven, Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431 (2004) ADSCrossRefGoogle Scholar
  10. 10.
    F.H.L. Koppens, J.A. Folk, J.M. Elzerman, R. Hanson, L.H. Willems van Beveren, I.T. Vink, H.P. Tranitz, W. Wegscheider, L.P. Kouwenhoven, L.M.K. Vandersypen, Control and detection of singlet-triplet mixing in a random nuclear field. Science 309, 1346–1350 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    J.R. Petta, A.C. Johnson, J.M. Taylor, E.A. Laird, A. Yacoby, M.D. Lukin, C.M. Marcus, M.P. Hanson, A.C. Gossard, Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    A.C. Johnson, J.R. Petta, J.M. Taylor, A. Yacoby, M.D. Lukin, C.M. Marcus, M.P. Hanson, A.C. Gossard, Triplet-singlet spin relaxation via nuclei in a double quantum dot. Nature 435, 925–928 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    R. Hanson, L.H. Willems van Beveren, I.T. Vink, J.M. Elzerman, W.J.M. Naber, F.H.L. Koppens, L.P. Kouwenhoven, L.M.K. Vandersypen, Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates. Phys. Rev. Lett. 94, 196802 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    F.H.L. Koppens, C. Buizert, K.J. Tielrooij, I.T. Vink, K.C. Nowack, T. Meunier, L.P. Kouwenhoven, L.M.K. Vandersypen, Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    T. Ando, A.B. Fowler, F. Stern, Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982) ADSCrossRefGoogle Scholar
  16. 16.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981) Google Scholar
  17. 17.
    Y. Takahashi, M. Nagase, H. Namatsu, K. Kurihara, K. Iwdate, Y. Nakajima, S. Horiguchi, K. Murase, M. Tabe, Fabrication technique for Si single-electron transistor operating at room temperature. Electron. Lett. 31, 136–137 (1995) CrossRefGoogle Scholar
  18. 18.
    L. Guo, E. Leobandung, L. Zhuang, S.Y. Chou, Fabrication and characterization of room temperature silicon single electron memory. J. Vac. Sci. Technol. B 15, 2840–2843 (1997) CrossRefGoogle Scholar
  19. 19.
    S.K. Ray, L.K. Bera, C.K. Maiti, S. John, S.K. Banerjee, Electrical characteristics of plasma oxidized Si1−xyGexCy metal–oxide–semiconductor capacitors. Appl. Phys. Lett. 72, 1250–1252 (1998) ADSCrossRefGoogle Scholar
  20. 20.
    D. Ali, H. Ahmed, Coulomb blockade in a silicon tunnel junction device. Appl. Phys. Lett. 64, 2119–2120 (1994) ADSCrossRefGoogle Scholar
  21. 21.
    L. Guo, E. Leobandung, S.Y. Chou, A silicon single-electron transistor memory operating at room temperature. Science 275, 649–651 (1997) CrossRefGoogle Scholar
  22. 22.
    M. Khoury, M.J. Rack, A. Gunther, D.K. Ferry, Spectroscopy of a silicon quantum dot. Appl. Phys. Lett. 74, 1576–1578 (1999) ADSCrossRefGoogle Scholar
  23. 23.
    K.-S. Park, S.-J. Kim, I.-B. Baek, W.-H. Lee, J.-S. Kang, Y.-B. Jo, S.D. Lee, C.-K. Lee, J.-B. Choi, J.-H. Kim, K.-H. Park, W.-J. Cho, M.-G. Jang, S.-J. Lee, SOI single-electron transistor with low RC delay for logic cells and SET/FET hybrid ICs. IEEE Trans. Nanotechnol. 4, 242–248 (2005) ADSCrossRefGoogle Scholar
  24. 24.
    E.G. Emiroglu, D.G. Hasko, D.A. Williams, Isolated double quantum dot capacitively coupled to a single quantum dot single-electron transistor in silicon. Appl. Phys. Lett. 83, 3942–3944 (2003) ADSCrossRefGoogle Scholar
  25. 25.
    S.D. Lee, K.S. Park, J.W. Park, J.B. Choi, S.-R.E. Yang, K.-H. Yoo, J. Kim, S.I. Park, K.T. Kim, Single-electron spectroscopy in a coupled triple-dot system: Role of interdot electron-electron interactions. Phys. Rev. B 62, R7735–R7738 (2000) ADSCrossRefGoogle Scholar
  26. 26.
    S.D. Lee, S.J. Shin, S.J. Choi, J.J. Lee, J.B. Choi, S. Park, S.-R.E. Yang, S.J. Lee, T.H. Zyung, Si-based Coulomb blockade device for spin qubit logic gate. Appl. Phys. Lett. 89, 023111 (2006) ADSCrossRefGoogle Scholar
  27. 27.
    A. Fujiwara, Y. Takahashi, Manipulation of elementary charge in a silicon charge-coupled device. Nature 410, 560–562 (2001) ADSCrossRefGoogle Scholar
  28. 28.
    J. Gorman, D.G. Hasko, D.A. Williams, Charge-qubit operation of an isolated double quantum dot. Appl. Phys. Lett. 95, 090502 (2005) CrossRefGoogle Scholar
  29. 29.
    K. Takashina, Y. Ono, A. Fujiwara, Y. Takahashi, Y. Hirayama, Valley polarization in Si(100) at zero magnetic field. Phys. Rev. Lett. 96, 236801 (2006) ADSCrossRefGoogle Scholar
  30. 30.
    T. Ouisse, D.K. Maude, S. Horiguchi, Y. Ono, Y. Takahashi, K. Murase, S. Cristoloveanu, Subband structure and anomalous valley splitting in ultra-thin silicon-on-insulator MOSFET’s. Physica B 249–251, 731–734 (1998) CrossRefGoogle Scholar
  31. 31.
    R. Augke, W. Eberhardt, C. Single, F.E. Prins, D.A. Wharam, D.P. Kern, Doped silicon single electron transistors with single island characteristics. Appl. Phys. Lett. 76, 2065–2067 (2000) ADSCrossRefGoogle Scholar
  32. 32.
    N.M. Zimmerman, W.H. Huber, A. Fujiwara, Y. Takahashi, Excellent charge offset stability in a Si-based single-electron tunneling transistor. Appl. Phys. Lett. 79, 3188–3190 (2001) ADSCrossRefGoogle Scholar
  33. 33.
    J.H.F. Scott-Thomas, S.B. Field, M.A. Kastner, H.I. Smith, D.A. Antoniadia, Conductance oscillations periodic in the density of a one-dimensional electron gas. Phys. Rev. Lett. 62, 583–586 (1989) ADSCrossRefGoogle Scholar
  34. 34.
    R.A. Smith, H. Ahmed, Gate controlled Coulomb blockade effects in the conduction of a silicon quantum wire. J. Appl. Phys. 81, 2699–2703 (1997) ADSCrossRefGoogle Scholar
  35. 35.
    L.P. Rokhinson, L.J. Guo, S.Y. Chou, D.C. Tsui, Double-dot charge transport in Si single-electron/hole transistors. Appl. Phys. Lett. 76, 1591–1593 (2000) ADSCrossRefGoogle Scholar
  36. 36.
    B.H. Choi, Y.S. Yu, D.H. Kim, S.H. Son, K.H. Cho, S.W. Hwang, D. Ahn, B.-G. Park, Double-dot-like charge transport through a small size silicon single electron transistor. Physica E 13, 946–949 (2002) ADSCrossRefGoogle Scholar
  37. 37.
    K.H. Cho, B.H. Choi, S.H. Son, S.W. Hwang, D. Ahn, B.-G. Park, B. Naser, J.-F. Lin, J.P. Bird, Evidence of double layer quantum dot formation in a silicon-on-insulator nanowire transistor. Appl. Phys. Lett. 86, 043101 (2005) ADSCrossRefGoogle Scholar
  38. 38.
    Y. Ono, A. Fujiwara, K. Nishiguchi, H. Inokawa, Y. Takahashi, Manipulation and detection of single electrons for future information processing. J. Appl. Phys. 97, 031101 (2005) ADSCrossRefGoogle Scholar
  39. 39.
    F. Schäffler, High-mobility Si and Ge structures. Semicond. Sci. Technol. 12, 1515–1549 (1997) ADSCrossRefGoogle Scholar
  40. 40.
    B.S. Meyerson, UHV/CVD growth of Si and Si:Ge alloys: chemistry, physics, and device applications. Proc. IEEE 80, 1592–1608 (1992) CrossRefGoogle Scholar
  41. 41.
    P.A. Cain, H. Ahmed, D.A. Williams, J.M. Bonar, Hole transport through single and double SiGe quantum dots. Appl. Phys. Lett. 77, 3415–3417 (2000) ADSCrossRefGoogle Scholar
  42. 42.
    P.A. Cain, H. Ahmed, D.A. Williams, Conductance peak splitting in hole transport through a SiGe double quantum dot. Appl. Phys. Lett. 78, 3624–3626 (2001) ADSCrossRefGoogle Scholar
  43. 43.
    P.A. Cain, H. Ahmed, D.A. Williams, Hole transport in coupled SiGe quantum dots for quantum computation. J. Appl. Phys. 92, 346–350 (2002) ADSCrossRefGoogle Scholar
  44. 44.
    H. Qin, S. Yasin, D.A. Williams, Fabrication and characterization of a SiGe double quantum dot structure. J. Vac. Sci. Technol. B 21, 2852–2855 (2003) CrossRefGoogle Scholar
  45. 45.
    D.S. Gandolfo, D.A. Williams, H. Qin, Characterization of a silicon–germanium quantum dot structure at 4.2 K and 40 mK. J. Appl. Phys. 97, 063710 (2005) ADSCrossRefGoogle Scholar
  46. 46.
    S.F. Nelson, K. Ismail, J.J. Nocera, F.F. Fang, E.E. Mendez, J.O. Chu, B.S. Meyerson, Observation of the fractional quantum Hall effect in Si/SiGe heterostructures. Appl. Phys. Lett. 61, 64–66 (1992) ADSCrossRefGoogle Scholar
  47. 47.
    K. Ismail, J.O. Chu, K.L. Saenger, B.S. Meyerson, W. Rausch, Modulation-doped n-type Si/SiGe with inverted interface. Appl. Phys. Lett. 65, 1248–1250 (1994) ADSCrossRefGoogle Scholar
  48. 48.
    K. Ismail, M. Arafa, K.L. Saenger, J.O. Chu, B.S. Meyerson, Extremely high electron mobility in Si/SiGe modulation-doped heterostructures. Appl. Phys. Lett. 66, 1077–1079 (1995) ADSCrossRefGoogle Scholar
  49. 49.
    L. Di Gaspare, K. Alfaramawi, F. Evangelisti, E. Palange, G. Barucca, G. Majni, Si/SiGe modulation-doped heterostructures grown on silicon-on-insulator substrates for high-mobility two-dimensional electron gases. Appl. Phys. Lett. 79, 2031–2033 (2001) ADSCrossRefGoogle Scholar
  50. 50.
    T. Okamoto, M. Ooya, K. Hosoya, S. Kawaji, Spin polarization and metallic behavior in a silicon two-dimensional electron system. Phys. Rev. B 69, 041202 (2004) ADSCrossRefGoogle Scholar
  51. 51.
    F. Stern, S.E. Laux, Charge transfer and low-temperature electron mobility in a strained Si layer in relaxed Si1−xGex. Appl. Phys. Lett. 61, 1110–1112 (1992) ADSCrossRefGoogle Scholar
  52. 52.
    D. Monroe, Y.H. Xie, E.A. Fitzgerald, P.J. Silverman, G.P. Watson, Comparison of mobility-limiting mechanisms in high-mobility Si1−xGex heterostructures. J. Vac. Sci. Technol. 11, 1731–1737 (1993) CrossRefGoogle Scholar
  53. 53.
    M.A. Eriksson, M. Friesen, S.N. Coppersmith, R. Joynt, L.J. Klein, K. Slinker, C. Tahan, P.M. Mooney, J.O. Chu, S.J. Koester, Spin-based quantum dot quantum computing in silicon. Quantum. Inf. Process. 3, 133–146 (2004) MATHCrossRefGoogle Scholar
  54. 54.
    W.X. Gao, K. Ismail, K.Y. Lee, J.O. Chu, S. Washburn, Observation of ballistic conductance and Aharonov–Bohm oscillations in Si/SiGe heterostructures. Appl. Phys. Lett. 65, 3114–3116 (1994) ADSCrossRefGoogle Scholar
  55. 55.
    S.J. Koester, K. Ismail, K.Y. Lee, J.O. Chu, Negative differential conductance in strained Si point contacts and wires. Appl. Phys. Lett. 71, 1528–1530 (1997) ADSCrossRefGoogle Scholar
  56. 56.
    L.P. Kouwenhoven, C.M. Marcus, P.L. McEuen, S. Tarucha, R.M. Westervelt, N.S. Wingreen, Electron transport in quantum dots, in Mesoscopic Electron Transport, ed. by L.L. Sohn, L.P. Kouwenhoven, G. Schön (Kluwer, Dordrecht, 1997), pp. 105–214 Google Scholar
  57. 57.
    L.J. Klein, K.A. Slinker, J.L. Truitt, S. Goswami, K.L.M. Lewis, S.N. Coppersmith, D.W. van der Weide, M. Friesen, R.H. Blick, D.E. Savage, M.G. Lagally, C. Tahan, R. Joynt, M.A. Eriksson, J.O. Chu, J.A. Ott, P.M. Mooney, Coulomb blockade in a silicon/silicon–germanium two-dimensional electron gas quantum dot. Appl. Phys. Lett. 84, 4047–4049 (2004) ADSCrossRefGoogle Scholar
  58. 58.
    S. Kanjanachuchai, T.J. Thornton, J.M. Fernández, H. Ahmed, Coulomb blockade in strained-Si nanowires on leaky virtual substrates. Semicond. Sci. Technol. 16, 72–76 (2001) ADSCrossRefGoogle Scholar
  59. 59.
    T. Berer, D. Pachinger, G. Pillwein, M. Mühlberger, H. Lichtenberger, G. Brunthaler, F. Schäffler, Lateral quantum dots in Si/SiGe realized by a Schottky split-gate technique. Appl. Phys. Lett. 88, 162112 (2006) ADSCrossRefGoogle Scholar
  60. 60.
    S.J. Koester, K. Ismail, K.Y. Lee, J.O. Chu, Weak localization in back-gated Si/Si0.7Ge0.3 quantum-well wires fabricated by reactive ion etching. Phys. Rev. B 54, 10604–10608 (1996) ADSCrossRefGoogle Scholar
  61. 61.
    K.Y. Lee, S.J. Koester, K. Ismail, J.O. Chu, Electrical characterization of Si/Si0.7Ge0.3 quantum well wires fabricated by low damage CF4 reactive ion etching. Microelectron. Eng. 35, 33–36 (1997) CrossRefGoogle Scholar
  62. 62.
    L.J. Klein, K.L.M. Lewis, K.A. Slinker, S. Goswami, D.W. van der Weide, R.H. Blick, P.M. Mooney, J.O. Chu, S.N. Coppersmith, M. Friesen, M.A. Eriksson, Quantum dots and etch-induced depletion of a silicon two-dimensional electron gas. J. Appl. Phys. 99, 023509 (2006) ADSCrossRefGoogle Scholar
  63. 63.
    M. Holzmann, D. Többen, G. Abstreiter, M. Wendel, H. Lorenz, J.P. Kotthaus, F. Schäffler, One-dimensional transport of electrons in Si/Si0.7Ge0.3 heterostructures. Appl. Phys. Lett. 66, 833–835 (1995) ADSCrossRefGoogle Scholar
  64. 64.
    R.G. Van Veen, A.H. Verbruggen, E. van der Drift, F. Schäffler, S. Radelaar, Experimental study on magnetoresistance phenomena in n-type Si/SiGe quantum wires. Semicond. Sci. Technol. 14, 508–516 (1999) ADSCrossRefGoogle Scholar
  65. 65.
    E. Giovine, A. Notargiacomo, L. Di Gaspare, E. Palange, F. Evangelisti, R. Leoni, G. Castellano, G. Torrioli, V. Foglietti, Investigation of SiGe-heterostructure nanowires. Nanotechnology 12, 132–135 (2001) ADSCrossRefGoogle Scholar
  66. 66.
    U. Wieser, U. Kunze, K. Ismail, J.O. Chu, Fabrication of Si/SiGe quantum point contacts by electron-beam lithography and shallow wet-chemical etching. Physica E 13, 1047–1050 (2002) ADSCrossRefGoogle Scholar
  67. 67.
    U. Dötsch, U. Gennser, C. David, G. Dehlinger, D. Grützmacher, T. Heinzel, S. Lüscher, K. Ensslin, Single-hole transistor in a p-Si:SiGe quantum well. Appl. Phys. Lett. 78, 341–343 (2001) ADSCrossRefGoogle Scholar
  68. 68.
    A. Notargiacomo, L. Di Gaspare, G. Scappucci, G. Mariottini, F. Evangelisti, E. Giovine, R. Leoni, Single-electron transistor based on modulation-doped SiGe heterostructures. Appl. Phys. Lett. 83, 302–304 (2003) ADSCrossRefGoogle Scholar
  69. 69.
    M.R. Sakr, H.W. Jiang, E. Yablonovitch, E.T. Croke, Fabrication and characterization of electrostatic Si/SiGe quantum dots with an integrated read-out channel. Appl. Phys. Lett. 87, 223104 (2005) ADSCrossRefGoogle Scholar
  70. 70.
    M. Holzmann, D. Többen, G. Abstreiter, F. Schäffler, Field-effect induced electron channels in a Si/Si0.7Ge0.3 heterostructure. J. Appl. Phys. 76, 3917–3919 (1994) ADSCrossRefGoogle Scholar
  71. 71.
    R.B. Dunford, N. Griffin, D.J. Paul, M. Pepper, D.J. Robbins, A.C. Churchill, W.Y. Leong, Schottky gating high mobility Si/Si1−xGex 2D electron systems. Thin Solid Films 369, 316–319 (2000) ADSCrossRefGoogle Scholar
  72. 72.
    K.A. Slinker, K.L.M. Lewis, C.C. Haselby, S. Goswami, L.J. Klein, J.O. Chu, S.N. Coppersmith, R. Joynt, R.H. Blick, M. Friesen, M.A. Eriksson, Quantum dots in Si/SiGe 2DEGs with Schottky top-gated leads. New J. Phys. 7, 246 (2005) ADSCrossRefGoogle Scholar
  73. 73.
    L.J. Klein, D.E. Savage, M.A. Eriksson, Coulomb blockade and Kondo effect in a few-electron silicon/silicon–germanium quantum dot. Appl. Phys. Lett. 90, 033103 (2007) ADSCrossRefGoogle Scholar
  74. 74.
    T. Berer, D. Pachinger, G. Pillwein, M. Mühlberger, H. Lichtenberger, G. Brunthaler, F. Schäffler, Single-electron transistor in strained Si/SiGe heterostructures. Physica E 34, 456–459 (2006) ADSCrossRefGoogle Scholar
  75. 75.
    D. Többen, D.A. Wharam, G. Abstreiter, J.P. Kotthaus, F. Schäffler, Transport properties of a Si/SiGe quantum point contact in the presence of impurities. Phys. Rev. B 52, 4704–4707 (1995) ADSCrossRefGoogle Scholar
  76. 76.
    D. Többen, D.A. Wharam, G. Abstreiter, J.P. Kotthaus, F. Schäffler, Ballistic electron transport through a quantum point contact defined in a Si/Si0.7Ge0.3 heterostructure. Semicond. Sci. Technol. 10, 711–714 (1995) ADSCrossRefGoogle Scholar
  77. 77.
    G. Scappucci, L. Di Gaspare, E. Giovine, A. Notargiacomo, R. Leoni, F. Evangelisti, Conductance quantization in etched Si/SiGe quantum point contacts. Phys. Rev. B 74, 035321 (2006) ADSCrossRefGoogle Scholar
  78. 78.
    G.D. Scott, M. Xiao, H.W. Jiang, E.T. Croke, E. Yablonovitch, Sputtered gold as an effective Schottky gate for strained Si/SiGe nanostructures. Appl. Phys. Lett. 90, 032110 (2007) ADSCrossRefGoogle Scholar
  79. 79.
    S. Goswami, K.A. Slinker, M. Friesen, L.M. McGuire, J.L. Truitt, C. Tahan, L.J. Klein, J.O. Chu, P.M. Mooney, D.W. van der Weide, R. Joynt, S.N. Coppersmith, M.A. Eriksson, Controllable valley splitting in silicon quantum devices. Nat. Phys. 3, 41–45 (2007) CrossRefGoogle Scholar
  80. 80.
    M.M. Roberts, L.J. Klein, D.E. Savage, K.A. Slinker, M. Friesen, G. Celler, M.A. Eriksson, M.G. Lagally, Elastically relaxed free-standing strained-silicon nanomembranes. Nat. Mater. 5, 388–393 (2006) ADSCrossRefGoogle Scholar
  81. 81.
    P. Zhang, E.P. Nordberg, B.-N. Park, G.K. Celler, I. Knezevic, P.G. Evans, M.A. Eriksson, M.G. Lagally, Electrical conductivity in silicon nanomembranes. New J. Phys. 8, 200 (2006) ADSCrossRefGoogle Scholar
  82. 82.
    D. Loss, D.P. DiVincenzo, Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998) ADSCrossRefGoogle Scholar
  83. 83.
    V. Cerletti, W.A. Coish, O. Gywat, D. Loss, Recipes for spin-based quantum computing. Nanotechnology 16, R27–R49 (2005) ADSCrossRefGoogle Scholar
  84. 84.
    B.E. Kane, A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998) ADSCrossRefGoogle Scholar
  85. 85.
    J.L. O’Brien, S.R. Schofield, M.Y. Simmons, R.G. Clark, A.S. Dzurak, N.J. Curson, B.E. Kane, N.S. McAlpine, M.E. Hawley, G.W. Brown, Towards the fabrication of phosphorus qubits for a silicon quantum computer. Phys. Rev. B 64, 161401 (2001) ADSCrossRefGoogle Scholar
  86. 86.
    G. Berman, G.W. Brown, M.E. Hawley, V.I. Tsifrinovich, Solid-state quantum computer based on scanning tunneling microscopy. Phys. Rev. Lett. 87, 097902 (2001) ADSCrossRefGoogle Scholar
  87. 87.
    T.D. Ladd, J.R. Goldman, F. Yamaguchi, Y. Yamamoto, E. Abe, K.M. Itoh, All-silicon quantum computer. Phys. Rev. Lett. 89, 017901 (2002) ADSCrossRefGoogle Scholar
  88. 88.
    T. Schenkel, A. Persaud, S.J. Park, J. Nilsson, J. Bokor, J.A. Liddle, R. Keller, D.H. Schneider, D.W. Cheng, D.E. Humphries, Solid state quantum computer development in silicon with single ion implantation. J. Appl. Phys. 94, 7017–7024 (2003) ADSCrossRefGoogle Scholar
  89. 89.
    R.G. Clark, R. Brenner, T.M. Buehler, V. Chan, N.J. Curson, A.S. Dzurak, E. Gauja, H.S. Goan, A.D. Greentree, T. Hallam, A.R. Hamilton, L.C.L. Hollenberg, D.N. Jamieson, J.C. McCallum, G.J. Milburn, J.L. O’Brien, L. Oberbeck, C.I. Pakes, S.D. Prawer, D.J. Reilly, F.J. Ruess, S.R. Schofield, M.Y. Simmons, F.E. Stanley, R.P. Starrett, C. Wellard, C. Yang, Progress in silicon-based quantum computing. Philos. Trans. R. Soc. Lond., Ser. A 361, 1451–1471 (2003) ADSCrossRefGoogle Scholar
  90. 90.
    A.J. Skinner, M.E. Davenport, B.E. Kane, Hydrogenic spin quantum computing in silicon: A digital approach. Phys. Rev. Lett. 90, 087901 (2003) ADSCrossRefGoogle Scholar
  91. 91.
    A.M. Stoneham, A.J. Fisher, P.T. Greenland, Optically driven silicon-based quantum gates with potential for high-temperature operation. J. Phys., Condens. Matter 15, L447–L451 (2003) ADSCrossRefGoogle Scholar
  92. 92.
    C.D. Hill, L.C.L. Hollenberg, A.G. Fowler, C.J. Wellard, A.D. Greentree, H.-S. Goan, Global control and fast solid-state donor electron spin quantum computing. Phys. Rev. B 72, 045350 (2005) ADSCrossRefGoogle Scholar
  93. 93.
    T.M. Buehler, V. Chan, A.J. Ferguson, A.S. Dzurak, F.E. Hudson, D.J. Reilly, A.R. Hamilton, R.G. Clark, D.N. Jamieson, C. Yang, C.I. Pakes, S. Prawer, Controlled single electron transfer between Si:P dots. Appl. Phys. Lett. 88, 192101 (2006) ADSCrossRefGoogle Scholar
  94. 94.
    R. Vrijen, E. Yablonovitch, K. Wang, H.W. Jiang, A. Balandin, V. Roychowdhury, T. Mor, D. DiVincenzo, Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures. Phys. Rev. A 62, 012306 (2000) ADSCrossRefGoogle Scholar
  95. 95.
    J. Levy, Quantum-information processing with ferroelectrically coupled quantum dots. Phys. Rev. A 64, 052306 (2001) ADSCrossRefGoogle Scholar
  96. 96.
    M. Friesen, P. Rugheimer, D.E. Savage, M.G. Lagally, D.W. van der Weide, R. Joynt, M.A. Eriksson, Practical design and simulation of silicon-based quantum-dot qubits. Phys. Rev. B 67, 121301(R) (2003) ADSCrossRefGoogle Scholar
  97. 97.
    J.P. Gordon, K.D. Bowers, Microwave spin echoes from donor electrons in silicon. Phys. Rev. Lett. 1, 368–370 (1958) ADSCrossRefGoogle Scholar
  98. 98.
    E. Abe, K.M. Itoh, J. Isoya, S. Yamasaki, Electron-spin phase relaxation of phosphorus donors in nuclear-spin-enriched silicon. Phys. Rev. B 70, 033204 (2004) ADSCrossRefGoogle Scholar
  99. 99.
    A.M. Tyryshkin, S.A. Lyon, A.V. Astashkin, A.M. Raitsimring, Electron spin relaxation times of phosphorus donors in silicon. Phys. Rev. B 68, 193207 (2003) ADSCrossRefGoogle Scholar
  100. 100.
    M. Xiao, I. Martin, E. Yablonovitch, H.W. Jiang, Electrical detection of the spin resonance of a single electron in a silicon field-effect transistor. Nature 430, 435–439 (2004) ADSCrossRefGoogle Scholar
  101. 101.
    M. Friesen, S. Chutia, C. Tahan, S.N. Coppersmith, Valley Splitting Theory of SiGe/Si/SiGe Quantum Wells. Phys. Rev. B, to appear. cond-mat/0608229 (unpublished)
  102. 102.
    L.J. Sham, M. Nakayama, Effective-mass approximation in the presence of an interface. Phys. Rev. B 20, 734–747 (1979) ADSCrossRefGoogle Scholar
  103. 103.
    F.J. Ohkawa, Y. Uemura, Theory of valley splitting in an N-Channel (100) inversion layer of Si: I. Formulation by extended zone effective mass theory. J. Phys. Soc. Jpn. 43, 907–916 (1977) ADSCrossRefGoogle Scholar
  104. 104.
    F.J. Ohkawa, Y. Uemura, Theory of valley splitting in an N-Channel (100) Inversion Layer of Si: II. Electric Break Through. J. Phys. Soc. Jpn. 43, 917–924 (1977) ADSCrossRefGoogle Scholar
  105. 105.
    F.J. Ohkawa, Electric break-through in an inversion layer: Exactly solvable model. Solid State Commun. 26, 69–71 (1978) ADSCrossRefGoogle Scholar
  106. 106.
    H. Fritzsche, Effect of stress on the donor wave functions in germanium. Phys. Rev. 125, 1560–1567 (1962) ADSCrossRefGoogle Scholar
  107. 107.
    W.D. Twose, in the Appendix of [106] Google Scholar
  108. 108.
    M. Nakayama, L.J. Sham, Surface-induced valley-splitting in n-channel (001) silicon-MOS charge layer. Solid State Commun. 28, 393–396 (1978) ADSCrossRefGoogle Scholar
  109. 109.
    F.J. Ohkawa, Multi-valley effective mass theory. J. Phys. Soc. Jpn. 46, 736–743 (1979) ADSCrossRefGoogle Scholar
  110. 110.
    T.B. Boykin, G. Klimeck, M.A. Eriksson, M. Friesen, S.N. Coppersmith, P. von Allmen, F. Oyafuso, S. Lee, Valley splitting in strained silicon quantum wells. Appl. Phys. Lett. 84, 115–117 (2004) ADSCrossRefGoogle Scholar
  111. 111.
    T.B. Boykin, G. Klimeck, M. Friesen, S.N. Coppersmith, P. von Allmen, F. Oyafuso, S. Lee, Valley splitting in low-density quantum-confined heterostructures studied using tight-binding models. Phys. Rev. B 70, 165325 (2004) ADSCrossRefGoogle Scholar
  112. 112.
    T.B. Boykin, G. Klimeck, P. von Allmen, S. Lee, F. Oyafuso, Valley splitting in V-shaped quantum wells. J. Appl. Phys. 97, 113702 (2005) ADSCrossRefGoogle Scholar
  113. 113.
    M.O. Nestoklon, L.E. Golub, E.L. Ivchenko, Spin and valley-orbit splittings in SiGe/Si heterostructures. Phys. Rev. B 73, 235334 (2006) ADSCrossRefGoogle Scholar
  114. 114.
    M. Friesen, M.A. Eriksson, S.N. Coppersmith, Magnetic field dependence of valley splitting in realistic Si/SiGe quantum wells. Appl. Phys. Lett. 89, 202106 (2006) ADSCrossRefGoogle Scholar
  115. 115.
    P. Weitz, R.J. Haug, K. von Klitzing, F. Schäffler, Tilted magnetic field studies of spin- and valley-splittings in Si/Si1−xGex heterostructures. Surf. Sci. 361–362, 542–546 (1996) CrossRefGoogle Scholar
  116. 116.
    S.J. Koester, K. Ismail, J.O. Chu, Determination of spin- and valley-split energy levels in strained Si quantum wells. Semicond. Sci. Technol. 12, 384–388 (1997) ADSCrossRefGoogle Scholar
  117. 117.
    H.W. Schumacher, A. Nauen, U. Zeitler, R.J. Haug, P. Weitz, A.G.M. Jansen, F. Schäffler, Anomalous coincidences between valley split Landau levels in a Si/SiGe heterostructure. Physica B 256–258, 260–263 (1998) CrossRefGoogle Scholar
  118. 118.
    V.S. Khrapai, A.A. Shashkin, V.P. Dolgopolov, Strong enhancement of the valley splitting in a two-dimensional electron system in silicon. Phys. Rev. B 67, 113305 (2003) ADSCrossRefGoogle Scholar
  119. 119.
    K. Lai, W. Pan, D.C. Tsui, S. Lyon, M. Mühlberger, F. Schäffler, Two-flux composite fermion series of the fractional quantum hall states in strained Si. Phys. Rev. Lett. 93, 156805 (2004) ADSCrossRefGoogle Scholar
  120. 120.
    M.A. Wilde, M. Rhode, C. Heyn, D. Heitmann, D. Grundler, U. Zeitler, F. Schäffler, R.J. Haug, Direct measurements of the spin and valley splittings in the magnetization of a Si/SiGe quantum well in tilted magnetic fields. Phys. Rev. B 72, 165429 (2005) ADSCrossRefGoogle Scholar
  121. 121.
    K. Lai, W. Pan, D.C. Tsui, S. Lyon, M. Mühlberger, F. Schäffler, Intervalley gap anomaly of two-dimensional electrons in silicon. Phys. Rev. Lett. 96, 076805 (2006) ADSCrossRefGoogle Scholar
  122. 122.
    K. Lai, T.M. Lu, W. Pan, D.C. Tsui, S. Lyon, J. Liu, Y.H. Xie, M. Mühlberger, F. Schäffler, Valley splitting of Si/Si1−xGex heterostructures in tilted magnetic fields. Phys. Rev. B 73, 161301 (2006) ADSCrossRefGoogle Scholar
  123. 123.
    T. Ando, Valley splitting in the silicon inversion layer: Misorientation effects. Phys. Rev. B 19, 3089–3095 (1979) ADSCrossRefGoogle Scholar
  124. 124.
    S. Lee, P. von Allmen, Magnetic-field dependence of valley splitting in Si quantum wells grown on tilted SiGe substrates. Phys. Rev. B 74, 245302 (2006) ADSCrossRefGoogle Scholar
  125. 125.
    P. von Allmen, S. Lee, Zero valley splitting at zero magnetic field for strained Si/SiGe quantum wells grown on tilted substrates. cond-mat/0606395 (unpublished)
  126. 126.
    K. Takashina, A. Fujiwara, S. Horiguchi, Y. Takahashi, Y. Hirayama, Valley splitting control in SiO2/Si/SiO2 quantum wells in the quantum Hall regime. Phys. Rev. B 69, 161304(R) (2004) ADSCrossRefGoogle Scholar
  127. 127.
    M. D’yakonov, V. Perel’, Spin relaxation of conduction electrons in noncentrosymmetric semiconductors. Sov. Phys. Solid State 13, 3023–3026 (1972) Google Scholar
  128. 128.
    F. Meier, B.P. Zakharchenya (eds.), Optical Orientation, Modern Problems in Condensed Matter Physics, vol. 8 (North-Holland, Amsterdam, 1984) Google Scholar
  129. 129.
    J.M. Kikkawa, D.D. Awschalom, Resonant spin amplification in n-type GaAs. Phys. Rev. Lett. 80, 4313–4316 (1998) ADSCrossRefGoogle Scholar
  130. 130.
    W.O. Putikka, R. Joynt, Theory of optical orientation in n-type semiconductors. Phys. Rev. B 70, 113201 (2004) ADSCrossRefGoogle Scholar
  131. 131.
    N. Nestle, G. Denninger, M. Vidal, C. Weinzierl, K. Brunner, K. Eberl, K. von Klitzing, Electron spin resonance on a two-dimensional electron gas. Phys. Rev. B 56, R4359–R4362 (1997) ADSCrossRefGoogle Scholar
  132. 132.
    M. Schulte, J.G.S. Lok, G. Denninger, W. Dietsche, Electron spin resonance on a two-dimensional electron gas in a single AlAs quantum well. Phys. Rev. Lett. 94, 137601 (2005) ADSCrossRefGoogle Scholar
  133. 133.
    C.F.O. Graeff, M.S. Brandt, M. Stutzmann, M. Holzmann, G. Arbstreiter, F. Schäffler, Electrically detected magnetic resonance of two-dimensional electron gases in Si/SiGe heterostructures. Phys. Rev. B 59, 13242–13250 (1999) ADSCrossRefGoogle Scholar
  134. 134.
    J. Matsunami, M. Ooya, T. Okamoto, Electrically detected electron spin resonance in a high-mobility silicon quantum well. Phys. Rev. Lett. 97, 066602 (2006) ADSCrossRefGoogle Scholar
  135. 135.
    W. Jantsch, Z. Wilamowski, N. Sandersfeld, F. Schäffler, ESR investigations of modulation-doped Si/SiGe quantum wells. Phys. Status Solidi 210, 643–648 (1999) CrossRefGoogle Scholar
  136. 136.
    W. Jantsch, Z. Wilamowski, N. Sandersfeld, F. Schäffler, Electric and magnetic field fluctuations in modulation doped Si/Ge quantum wells. Physica E 6, 218–221 (2000) ADSCrossRefGoogle Scholar
  137. 137.
    N. Sandersfeld, W. Jantsch, Z. Wilamowski, F. Schäffler, ESR investigation of modulation-doped Si/SiGe quantum wells. Thin Solid Films 369, 312–315 (2000) ADSCrossRefGoogle Scholar
  138. 138.
    Z. Wilamowski, N. Sandersfeld, W. Jantsch, D. Többen, F. Schäffler, Screening breakdown on the route toward the metal-insulator transition in modulation doped Si/SiGe quantum wells. Phys. Rev. Lett. 87, 026401 (2001) ADSCrossRefGoogle Scholar
  139. 139.
    Z. Wilamowski, W. Jantsch, H. Malissa, U. Rössler, Evidence and evaluation of the Bychkov–Rashba effect in SiGe/Si/SiGe quantum wells. Phys. Rev. B 66, 195315 (2002) ADSCrossRefGoogle Scholar
  140. 140.
    Z. Wilamowski, W. Jantsch, ESR studies of the Bychkov–Rashba field in modulation doped Si/SiGe quantum wells. Physica E 12, 439–442 (2002) ADSCrossRefGoogle Scholar
  141. 141.
    Z. Wilamowski, W. Jantsch, Suppression of spin relaxation of conduction electrons by cyclotron motion. Phys. Rev. B 69, 035328 (2004) ADSCrossRefGoogle Scholar
  142. 142.
    Z. Wilamowski, W. Jantsch, Spin relaxation of 2D electron in Si/SiGe quantum well suppressed by applied magnetic field. Semicond. Sci. Technol. 19, S390–S391 (2004) ADSCrossRefGoogle Scholar
  143. 143.
    H. Malissa, W. Jantsch, M. Mühlberger, F. Schäffler, Z. Wilamowski, M. Draxler, P. Bauer, Anisotropy of g-factor and electron spin resonance linewidth in modulation doped SiGe quantum wells. Appl. Phys. Lett. 85, 1739–1741 (2004) ADSCrossRefGoogle Scholar
  144. 144.
    W. Jantsch, H. Malissa, Z. Wilamowski, H. Lichtenberger, G. Chen, F. Schäffler, G. Bauer, Spin properties of electrons in low-dimensional SiGe structures. J. Supercond. 18, 145–149 (2005) ADSCrossRefGoogle Scholar
  145. 145.
    Z. Wilamowski, H. Malissa, F. Schäffler, W. Jantsch, g-factor tuning and manipulation of spins by an electric current. cond-mat/0610046 (unpublished)
  146. 146.
    A.M. Tyryshkin, S.A. Lyon, W. Jantsch, F. Schäffler, Spin manipulation of free two-dimensional electrons in Si/SiGe quantum wells. Phys. Rev. Lett. 94, 126802 (2005) ADSCrossRefGoogle Scholar
  147. 147.
    M.J. Kane, N. Apsley, D.A. Anderson, L.L. Taylor, T. Kerr, Parallel conduction in GaAs/AlxGa1−xAs modulation doped heterojunctions. J. Phys. C 18, 5629–5636 (1985) ADSCrossRefGoogle Scholar
  148. 148.
    G. Feher, Electron spin resonance experiments on donors in silicon. I. Electronic structure of donors by the electron nuclear double resonance technique. Phys. Rev. 114, 1219–1244 (1959) ADSCrossRefGoogle Scholar
  149. 149.
    C. Tahan, R. Joynt, Rashba spin-orbit coupling and spin relaxation in silicon quantum wells. Phys. Rev. B 71, 075315 (2005) ADSCrossRefGoogle Scholar
  150. 150.
    P. Pfeffer, W. Zawadzki, Spin splitting of conduction subbands in III–V heterostructures due to inversion asymmetry. Phys. Rev. B 59, R5312–R5315 (1999) ADSCrossRefGoogle Scholar
  151. 151.
    J.T. Olesberg, W.H. Lau, M.E. Flatté, C. Yu, E. Altunkaya, E.M. Shaw, T.C. Hasenberg, T.F. Boggess, Interface contributions to spin relaxation in a short-period InAs/GaSb superlattice. Phys. Rev. B 64, 201301(R) (2001) ADSCrossRefGoogle Scholar
  152. 152.
    E.Y. Sherman, Random spin-orbit coupling and spin relaxation in symmetric quantum wells. Appl. Phys. Lett. 82, 209–211 (2003) ADSCrossRefGoogle Scholar
  153. 153.
    E.Y. Sherman, Minimum of spin-orbit coupling in two-dimensional structures. Phys. Rev. B 67, 161303(R) (2003) ADSGoogle Scholar
  154. 154.
    E.L. Ivchenko, Spin relaxation of free carriers in a noncentrosymmetric semiconductor in a longitudinal magnetic field. Sov. Phys. Solid State 15, 1048–1050 (1973) Google Scholar
  155. 155.
    G. Dresselhaus, Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955) MATHADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • J. L. Truitt
    • 1
  • K. A. Slinker
    • 1
  • K. L. M. Lewis
    • 1
  • D. E. Savage
    • 1
  • Charles Tahan
    • 2
  • L. J. Klein
    • 1
  • J. O. Chu
    • 3
  • P. M. Mooney
    • 4
  • A. M. Tyryshkin
    • 5
  • D. W. van der Weide
    • 6
  • Robert Joynt
    • 1
  • S. N. Coppersmith
    • 1
  • Mark Friesen
    • 1
  • M. A. Eriksson
    • 1
  1. 1.Department of PhysicsUniversity of WisconsinMadisonUSA
  2. 2.Cavendish LaboratoryCambridgeUK
  3. 3.IBM Research DivisionT.J. Watson Research CenterNew YorkUSA
  4. 4.Department of PhysicsSimon Fraser UniversityBurnabyCanada
  5. 5.Department of Electrical EngineeringPrinceton UniversityPrincetonNJUSA
  6. 6.Department of Electrical and Computer EngineeringUniversity of WisconsinMadisonUSA

Personalised recommendations