On the Hardness and Existence of Quasi-Strict Equilibria

  • Felix Brandt
  • Felix Fischer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4997)

Abstract

This paper investigates the computational properties of quasi-strict equilibrium, an attractive equilibrium refinement proposed by Harsanyi, which was recently shown to always exist in bimatrix games. We prove that deciding the existence of a quasi-strict equilibrium in games with more than two players is NP-complete. We further show that, in contrast to Nash equilibrium, the support of quasi-strict equilibrium in zero-sum games is unique and propose a linear program to compute quasi-strict equilibria in these games. Finally, we prove that every symmetric multi-player game where each player has two actions at his disposal contains an efficiently computable quasi-strict equilibrium which may itself be asymmetric.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aumann, R.J.: Acceptable points in general n-person games. In: Tucker, A.W., Luce, R.D. (eds.) Contributions to the Theory of Games IV, Annals of Mathematics Studies, vol. 40, pp. 287–324. Princeton University Press, Princeton (1959)Google Scholar
  2. 2.
    Aumann, R.J.: On the non-transferable utility value: A comment on the Roth-Shafer examples. Econometrica 53(3), 667–678 (1985)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Brandt, F., Fischer, F., Harrenstein, P., Shoham, Y.: A game-theoretic analysis of strictly competitive multiagent scenarios. In: Veloso, M. (ed.) Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI), pp. 1199–1206 (2007)Google Scholar
  4. 4.
    Brandt, F., Fischer, F., Holzer, M.: Symmetries and the complexity of pure Nash equilibrium. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 212–223. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Chen, X., Deng, X.: Settling the complexity of 2-player Nash-equilibrium. In: Proceedings of the 47th Symposium on Foundations of Computer Science (FOCS), pp. 261–272. IEEE Press, Los Alamitos (2006)Google Scholar
  6. 6.
    Cubitt, R., Sugden, R.: Rationally justifiable play and the theory of non-cooperative games. Economic Journal 104(425), 798–803 (1994)CrossRefMATHGoogle Scholar
  7. 7.
    Daskalakis, C., Papadimitriou, C.H.: Computing equilibria in anonymous games. In: Proceedings of the 48th Symposium on Foundations of Computer Science (FOCS), IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  8. 8.
    Dutta, B., Laslier, J.-F.: Comparison functions and choice correspondences. Social Choice and Welfare 16(4), 513–532 (1999)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gale, D., Kuhn, H.W., Tucker, A.W.: On symmetric games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games, vol. 1, pp. 81–87. Princeton University Press, Princeton (1950)Google Scholar
  10. 10.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)MATHGoogle Scholar
  11. 11.
    Gottlob, G., Greco, G., Scarcello, F.: Pure Nash equilibria: Hard and easy games. Journal of Artificial Intelligence Research 24, 195–220 (2005)MathSciNetMATHGoogle Scholar
  12. 12.
    Harsanyi, J.C.: Oddness of the number of equilibrium points: A new proof. International Journal of Game Theory 2, 235–250 (1973)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Jansen, M.J.M.: Regularity and stability of equilibrium points of bimatrix games. Mathematics of Operations Research 6(4), 530–550 (1981)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Jansen, M.J.M.: Regular equilibrium points of bimatrix points. OR Spektrum 9(2), 82–92 (1987)CrossRefMATHGoogle Scholar
  15. 15.
    Jurg, A.P., Jansen, M.J.M., Potters, J.A.M., Tijs, S.H.: A symmetrization for finite two-person games. ZOR – Methods and Models of Operations Research 36(2), 111–123 (1992)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Kojima, M., Okada, A., Shindoh, S.: Strongly stable equilibrium points of N-person noncooperative games. Mathematics of Operations Research 10(4), 650–663 (1985)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Luce, R.D., Raiffa, H.: Games and Decisions: Introduction and Critical Survey. Wiley, Chichester (1957)MATHGoogle Scholar
  18. 18.
    McLennan, A., Tourky, R.: Simple complexity from imitation games (unpublished manuscript, 2005)Google Scholar
  19. 19.
    Miltersen, P.B., Sørensen, T.B.: Computing sequential equilibria for two-player games. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 107–116. SIAM, Philadelphia (2006)Google Scholar
  20. 20.
    Miltersen, P.B., Sørensen, T.B.: Fast algorithms for finding proper strategies in game trees. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 874–883. SIAM, Philadelphia (2008)Google Scholar
  21. 21.
    Nash, J.F.: Non-cooperative games. Annals of Mathematics 54(2), 286–295 (1951)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Norde, H.: Bimatrix games have quasi-strict equilibria. Mathematical Programming 85, 35–49 (1999)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Norde, H., Potters, J., Reijnierse, H., Vermeulen, D.: Equilibrium selection and consistency. Games and Economic Behavior 12(2), 219–225 (1996)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Papadimitriou, C.H., Roughgarden, T.: Computing equilibria in multi-player games. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 82–91. SIAM, Philadelphia (2005)Google Scholar
  25. 25.
    Peleg, B., Tijs, S.: The consistency principle for games in strategic form. International Journal of Game Theory 25, 13–34 (1996)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Quesada, A.: Another impossibility result for normal form games. Theory and Decision 52, 73–80 (2002)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Rozenfeld, O., Tennenholtz, M.: Strong and correlated strong equilibria in monotone congestion games. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 74–86. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Squires, D.: Impossibility theorems for normal form games. Theory and Decision 44, 67–81 (1998)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    van Damme, E.: Refinements of the Nash Equilibrium Concept. Springer, Heidelberg (1983)CrossRefMATHGoogle Scholar
  30. 30.
    van Damme, E.: Stability and Perfection of Nash Equilibria, 2nd edn. Springer, Heidelberg (1991)CrossRefMATHGoogle Scholar
  31. 31.
    von Neumann, J.: Zur Theorie der Gesellschaftspiele. Mathematische Annalen 100, 295–320 (1928)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Felix Brandt
    • 1
  • Felix Fischer
    • 1
  1. 1.Institut für InformatikUniversität MünchenMünchenGermany

Personalised recommendations