A Study of Evaluation Functions for the Graph K-Coloring Problem

  • Daniel Cosmin Porumbel
  • Jin-Kao Hao
  • Pascale Kuntz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4926)


The evaluation or fitness function is a key component of any heuristic search algorithm. This paper introduces a new evaluation function for the well-known graph K-coloring problem. This function takes into account not only the number of conflicting vertices, but also inherent information related to the structure of the graph. To assess the effectiveness of this new evaluation function, we carry out a number of experiments using a set of DIMACS benchmark graphs. Based on statistic data obtained with a parameter free steepest descent, we show an improvement of the new evaluation function over the classical one.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avanthay, C., Hertz, A., Zufferey, N.: A variable neighborhood search for graph coloring. European Journal of Operational Research 151(2), 379–388 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Dorne, R., Hao, J.K.: Tabu search for graph coloring, T-colorings and set T-colorings. Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, 77–92 (1998)Google Scholar
  3. 3.
    Eiben, A.E., van der Hauw, J.K.: Adaptive penalties for evolutionary graph coloring. In: Rao, A., Singh, M.P., Wooldridge, M.J. (eds.) ATAL 1997. LNCS, vol. 1365, pp. 95–106. Springer, Heidelberg (1998)Google Scholar
  4. 4.
    Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. Journal of Heuristics 2, 5–30 (1996)CrossRefGoogle Scholar
  5. 5.
    Fleurent, C., Ferland, J.A.: Genetic and hybrid algorithms for graph coloring. Annals of Operations Research 63, 437–461 (1996)zbMATHCrossRefGoogle Scholar
  6. 6.
    Galinier, P., Hao, J.K.: Hybrid Evolutionary Algorithms for Graph Coloring. Journal of Combinatorial Optimization 3(4), 379–397 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Computing 39(4), 345–351 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning. Operations Research 39(3), 378–406 (1991)zbMATHCrossRefGoogle Scholar
  9. 9.
    Johnson, D.S., Trick, M.A. (eds.): Cliques, Coloring, and Satisfiability: 2nd DIMACS Implementation Challenge. In: DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26, AMS, USA (1996)Google Scholar
  10. 10.
    Karp, R.M.: Reducibility among combinatorial problems. Complexity of Computer Computations 43, 85–103 (1972)MathSciNetGoogle Scholar
  11. 11.
    Leighton, F.T.: A graph coloring algorithm for large scheduling problems. Journal of Research of the National Bureau of Standards 84(6), 489–503 (1979)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Morgenstern, C.: Distributed Coloration Neighborhood Search. In: [9], pp. 335–357 (1996)Google Scholar
  13. 13.
    Rodriguez-Tello, E., Hao, J.K., Torres-Jimenez, J.: An improved evaluation function for the bandwidth minimization problem. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 650–659. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Rodriguez-Tello, E., Hao, J.K.: On the role of evaluation functions for heuristic search (working paper, 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Daniel Cosmin Porumbel
    • 1
  • Jin-Kao Hao
    • 1
  • Pascale Kuntz
    • 2
  1. 1.LERIAUniversité d’AngersAngers Cedex 01France
  2. 2.LINAPolytechNantesNantesFrance

Personalised recommendations