Brain Corticosteroid Receptor Function in Response to Psychosocial Stressors

  • E.R de Kloet
  • N.A. Datson
  • Y. Revsin
  • D.L. Champagne
  • M.S. Oitzl


A fundamental question in the neuroendocrinology of stress and adaptation is how stress mediators that are crucial for resilience and health can change into harmful signals enhancing vulnerability to disease. To address this question, we focus in the rodent on corticosterone as the end product of the hypothalamic-pituitary-adrenal (HPA) axis, which coordinates the behavioural and physiological response to stressors. The action of corticosterone ismediated bymineralocorticoid (MR)and glucocorticoid receptors (GR) that are abundantly expressed in neurons of the limbic hippocampus, amygdala and prefrontal cortex. The receptors are transcription factors regulating gene transcription but recently – much to our surprise – these nuclear receptors also were discovered tomediate rapid, non-genomic action on glutamate transmission.MR participates in initial stress reactions important for appraisal and coping processes, whereas management of the later adaptive phase primarily depends on GR. Gene variants of MR and GR have been identified. Moreover, the expression of MR and GR shows enduring epigenetic changes in response to early life experience. Both gene variants and the altered expression of MR and GR have lasting consequences for stress responsiveness, cognitive performance and emotional arousal in later life. In conclusion, an imbalance in stress mediators caused by genetic factors and early life experience is a characteristic feature of a phenotype vulnerable for later life stressors. This concept calls for recovery of the MR/GR balance as a therapeutic strategy to promote the resilience that is still present in the diseased brain.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bestetti G, Rossi GL (1980) Hypothalamic lesions in rats with long-term streptozotocin-induced diabetes mellitus. A semiquantitative light- and electron-microscopic study. Acta Neuropathol (Berl) 52:119–127CrossRefGoogle Scholar
  2. Beauquis J, Roig P, Revsin Y, de Kloet ER, Homo-Delarche F, Saravia F, De Nicola AF (2007). El bloqueo del receptor para glucocorticoides (GR) restaura la neurogénesis en el hipocampo de ratones diabéticos. Sociedad Argentina de Investigación Clínica, Mar del Plata, Argentina. Abstract 0124Google Scholar
  3. Bohus B, de Kloet ER (1981) Adrenal steroids and extinction behavior: antagonism by progesterone, deoxycorticosterone and dexamethasone of a specific effect of corticosterone. Life Sci 28:433–440PubMedCrossRefGoogle Scholar
  4. Brinks V, van der Mark MH, de Kloet ER, Oitzl MS (2007) Differential MR/GR activation in mice results in emotional states beneficial or impairing for cognition. Neural Plast 90163Google Scholar
  5. Caldji C, Tannenbaum B, Sharma S, Francis D, Plotsky PM, Meaney MJ (1998) Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proc Natl Acad Sci USA 95:5335–5340PubMedCrossRefGoogle Scholar
  6. Champagne D, van Hasselt F, Ramakers G, Meaney M, de Kloet ER, Joëls M, Krugers HJ (2006) Maternal care and hippocampal plasticity. J Neurosci (in press)Google Scholar
  7. Chan O, Chan S, Inouye K, Vranic M, Matthews SG (2001) Molecular regulation of the hypothalamo-pituitary-adrenal axis in streptozotocin-induced diabetes: effects of insulin treatment. Endocrinology 142:4872–4879PubMedCrossRefGoogle Scholar
  8. Coldwell J, Pike A, Dunn J (2006) Household chaos–links with parenting and child behaviour. J Child Psychol Psychiat 47:1116–1122PubMedCrossRefGoogle Scholar
  9. Conway-Campbell BL, McKenna MA, Wiles CC, Atkinson HC, de Kloet ER, Lightman SL (2007) Proteasome-dependent down-regulation of activated nuclear hippocampal glucocorticoid receptors determines dynamic responses to corticosterone. Endocrinology. 148:5470–5477PubMedCrossRefGoogle Scholar
  10. Datson NA, van der Perk J, de Kloet ER, Vreugdenhil E (2001) Identification of corticosteroid-responsive genes in rat hippocampus using serial analysis of gene expression. Eur J Neurosci 14:675–689PubMedCrossRefGoogle Scholar
  11. Datson NA, Meijer L, Steenbergen PJ, Morsink MC, van der Laan S, Meijer OC, de Kloet ER (2004) Expression profiling in laser microdissected hippocampal subregions in rat brain reveals large subregion-specific differences in expression. Eur J Neurosci 20:2541–2554PubMedCrossRefGoogle Scholar
  12. Datson NA, Morsink MC, Meijer OC, de Kloet ER (2008) Central corticosteroid actions: search for gene targets. Eur J Pharmacol, 583:272–289PubMedCrossRefGoogle Scholar
  13. de Kloet ER, Sutanto W, van den Berg DTWM, Carey MP, van Haarst AD, Hornsby CD, Meijer OC, Rots NY, Oitzl MS (1993) Brain mineralocorticoid receptor diversity: functional implications. J Steroid Biochem Molecul Biol 47:1–6CrossRefGoogle Scholar
  14. de Kloet ER, Vreugdenhil E, Oitzl MS, Joëls M (1998) Brain corticosteroid receptor balance in health and disease. Endocr Rev 19:269–301PubMedCrossRefGoogle Scholar
  15. de Kloet ER, Oitzl MS, Joëls M (1999) Stress and cognition: are corticosteroids good or bad guys? Trends Neurosci 22:422–426PubMedCrossRefGoogle Scholar
  16. de Kloet ER, Joëls M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475PubMedCrossRefGoogle Scholar
  17. de Kloet ER, Oitzl MS, Vermetten E (2007) Stress hormones and PTSD: basic studies and clinical perspectives. Progr Brain Res 167:1–320Google Scholar
  18. De Nicola AF, Fridman O, Del Castillo EJ, Foglia VG (1976) The influence of streptozotocin diabetes on adrenal function in male rats. Horm Metab Res 8:388–392PubMedCrossRefGoogle Scholar
  19. de Quervain DJ, Roozendaal B, McGaugh JL (1998) Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature 394:787–90PubMedCrossRefGoogle Scholar
  20. de Wied D (1997) The neuropeptide story. Geoffrey Harris Lecture, Budapest, Hungary, July 1994. Front Neuroendocrinol 18:101–113PubMedCrossRefGoogle Scholar
  21. DeRijk RH, Wüst S, Meijer OC, Zennaro MC, Federenko IS, Hellhammer DH, Giacchetti G, Vreugdenhil E, Zitman FG, de Kloet ER (2006) A common polymorphism in the mineralocorticoid receptor modulates stress responsiveness. J Clin Endocrinol Metab 91:5083–5089PubMedCrossRefGoogle Scholar
  22. Dupret D, Fabre A, Döbrössy MD, Panatier A, Rodríguez JJ, Lamarque S, Lemaire V, Oliet SH, Piazza PV, Abrous DN (2007) Spatial learning depends on both the addition and removal of new hippocampal neurons. PLoS Biol 5:e214PubMedCrossRefGoogle Scholar
  23. Ferguson D, Sapolsky R (2007) Mineralocorticoid receptor overexpression differentially modulates specific phases of spatial and nonspatial memory. J Neurosci 27:8046–8052PubMedCrossRefGoogle Scholar
  24. Gass P, Kretz O, Wolfer DP, Berger S, Tronche F, Reichardt HM, Kellendonk C, Lipp HP, Schmid W, Schütz G (2000) Genetic disruption of mineralocorticoid receptor leads to impaired neurogenesis and granule cell degeneration in the hippocampus of adult mice. EMBO Rep 1:447–451PubMedCrossRefGoogle Scholar
  25. Gispen WH, Biessels GJ (2000) Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci 23:542–549PubMedCrossRefGoogle Scholar
  26. Grootendorst J, de Kloet ER, Dalm S, Oitzl MS (2001a) Reversal of cognitive deficit of apolipoprotein E knockout mice after repeated exposure to a common environmental experience. Neuroscience 108:237–247CrossRefGoogle Scholar
  27. Grootendorst J, de Kloet ER, Vossen C, Dalm S, Oitzl MS (2001b) Repeated exposure to rats has persistent genotype-dependent effects on learning and locomotor activity of apolipoprotein E knockout and C57Bl/6 mice. Behav Brain Res 125:249–259CrossRefGoogle Scholar
  28. Holsboer F (2000) The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23:477–501PubMedCrossRefGoogle Scholar
  29. Joëls M (1997) Steroid hormones and excitability in the mammalian brain. Front Neuroendocrinol 18:2–48PubMedCrossRefGoogle Scholar
  30. Joëls M (2006) Corticosteroid effects in the brain: U-shape it. Trends Pharmacol Sci 27:244–250PubMedCrossRefGoogle Scholar
  31. Joëls M, de Kloet ER (1989) Effects of glucocorticoids and norepinephrine on the excitability in the hippocampus. Science 245:1502–1505PubMedCrossRefGoogle Scholar
  32. Joëls M, de Kloet ER (1994) Mineralocorticoid and glucocorticoid receptors in the brain. Implications for ion permeability and transmitter systems. Prog Neurobiol 43:1–36PubMedCrossRefGoogle Scholar
  33. Joëls M, Pu Z, Wiegert O, Oitzl MS, Krugers HJ (2006) Learning under stress: How does it work? Trends Cogn Sci 10:152–158PubMedCrossRefGoogle Scholar
  34. Joëls M, Karst H, Krugers HJ, Lucassen PJ (2007) Chronic stress: implications for neuronal morphology, function and neurogenesis. Front Neuroendocrinol 28:72–96PubMedCrossRefGoogle Scholar
  35. Joëls M, Karst H, Derijk R, de Kloet ER (2008) The coming out of the brain mineralocrticoid receptor. Trends Neurosci 31:1–7PubMedCrossRefGoogle Scholar
  36. Karssen AM, Meijer OC, Berry A, Sanjuan Piñol R, de Kloet ER (2005) Low doses of dexamethasone can produce a hypocorticosteroid state in the brain. Endocrinology 146:5587–5595PubMedCrossRefGoogle Scholar
  37. Karst H, Joëls M (2007) Brief RU 38486 treatment normalizes the effects of chronic stress on calcium currents in rat hippocampal CA1 neurons. Neuropsychopharmacology 32:1830–1839PubMedCrossRefGoogle Scholar
  38. Karst H, Berger S, Turiault M, Tronche F, Schütz G, Joëls M (2005) Mineralocorticoid receptors are indispensable for non-genomic modulation of hippocampal glutamate transmission by corticosterone. Proc Natl Acad Sci USA 102:19204–19207PubMedCrossRefGoogle Scholar
  39. Kendler KS, Gardner CO, Prescott CA (2006) Toward a comprehensive developmental model for major depression in men. Am J Psychiat 163:115–124PubMedCrossRefGoogle Scholar
  40. Kiss JZ, Voorhuis TA, van Eekelen JA, de Kloet ER, de Wied D (1987) Organization of vasotocin-immunoreactive cells and fibers in the canary brain. J Comp Neurol 263:347–364PubMedCrossRefGoogle Scholar
  41. Krugers HJ, Goltstein PM, van der Linden S, Joëls M (2006) Blockade of glucocorticoid receptors rapidly restores hippocampal CA1 synaptic plasticity after exposure to chronic stress. Eur J Neurosci 23:3051–3055PubMedCrossRefGoogle Scholar
  42. Kruk MR, Halász J, Meelis W, Haller J (2004) Fast positive feedback between the adrenocortical stress response and a brain mechanism involved in aggressive behavior. Behav Neurosci 118:1062–1070PubMedCrossRefGoogle Scholar
  43. Kuningas M, de Rijk RH, Westendorp RG, Jolles J, Slagboom PE, van Heemst D (2007) Mental performance in old age dependent on cortisol and genetic variance in the mineralocorticoid and glucocorticoid receptors. Neuropsychopharmacology 32:1295–1301PubMedCrossRefGoogle Scholar
  44. Lein ES, Zhao X, Gage FH (2004) Defining a molecular atlas of the hippocampus using DNA microarrays and high-throughput in situ hybridization. J Neurosci 24:3879–3889PubMedCrossRefGoogle Scholar
  45. Levine S (2005) Developmental determinants of sensitivity and resistance to stress. Psychoneuroendocrinology 30:939–946PubMedCrossRefGoogle Scholar
  46. Liu D, Diorio J, Day JC, Francis DD, Meaney MJ (2000) Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nature Neurosci 3:799–806PubMedCrossRefGoogle Scholar
  47. Liu D, Diorio J, Tannenbaum B, Caldji C, Francis D, Freedman A, Sharma S, Pearson D, Plotsky PM, Meaney MJ (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 277:1659–1662PubMedCrossRefGoogle Scholar
  48. Lu NZ, Cidlowski JA (2006) Glucocorticoid receptor isoforms generate transcription specificity. Trends Cell Biol 16:301–307PubMedCrossRefGoogle Scholar
  49. Magarinos AM, McEwen BS (2000) Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress. Proc Natl Acad Sci USA 97:11056–11061PubMedCrossRefGoogle Scholar
  50. McEwen BS (1999) Stress and hippocampal plasticity. Ann Rev Neurosci 22:105–122PubMedCrossRefGoogle Scholar
  51. McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87:873–904PubMedCrossRefGoogle Scholar
  52. McEwen BS, Magarinos AM, Reagan LP (2002) Studies of hormone action in the hippocampal formation: possible relevance to depression and diabetes. J Psychosom Res 53:883–890PubMedCrossRefGoogle Scholar
  53. McLaughlin KJ, Gomez JL, Baran SE, Conrad CD (2007) The effects of chronic stress on hippocampal morphology and function: an evaluation of chronic restraint paradigms. Brain Res 1161:56–64PubMedCrossRefGoogle Scholar
  54. Meaney MJ, Szyf M (2005) Maternal care as a model for experience-dependent chromatin plasticity? Trends Neurosci 28:456–463PubMedCrossRefGoogle Scholar
  55. Meijer OC, de Lange EC, Breimer DD, de Boer AG, Workel JO, de Kloet ER (1998) Penetration of dexamethasone into brain glucocorticoid targets is enhanced in mdr1A P-glycoprotein knockout mice. Endocrinology 139(4):1789–1793PubMedCrossRefGoogle Scholar
  56. Meijer OC, van der Laan S, Lachize S, Steenbergen PJ, de Kloet ER (2006) Steroid receptor coregulator diversity: what can it mean for the stressed brain? Neuroscience 138:891–899PubMedCrossRefGoogle Scholar
  57. Mikičs E, Barsy B, Barsvari B, Haller J (2005) Behavioral specificity of non-genomic glucocorticoid effects in rats: effects on risk assessment in the elevated plus-maze and the open-field. Horm Behav 48:152–162PubMedCrossRefGoogle Scholar
  58. Morsink MC, Joëls M, Sarabdjitsingh RA, Meijer OC, De Kloet ER, Datson NA (2006a) The dynamic pattern of glucocorticoid receptor-mediated transcriptional responses in neuronal PC12 cells. J Neurochem 99:1282–1298CrossRefGoogle Scholar
  59. Morsink MC, Steenbergen PJ, Vos JB, Karst H, Joëls M, De Kloet ER, Datson NA (2006b) Acute activation of hippocampal glucocorticoid receptors results in different waves of gene expression throughout time. J Neuroendocrinol 18:239–252CrossRefGoogle Scholar
  60. Nair SM, Karst H, Dumas T, Phillips R, Sapolsky RM, Rumpff-van Essen L, Maslam S, Lucassen PJ, Joëls M (2004) Gene expression profiles associated with survival of individual rat dentate cells after endogenous corticosteroid deprivation. Eur J Neurosci 20:3233–3243PubMedCrossRefGoogle Scholar
  61. Nottebohm F (2005) The neural basis of birdsong. PLoS Biol 3:e164PubMedCrossRefGoogle Scholar
  62. Oitzl MS, de Kloet, ER (1992) Selective corticoid-receptor antagonists modulate specific aspects of spatial orientation learning. Behav Neurosci 106:62–71PubMedCrossRefGoogle Scholar
  63. Oitzl MS, de Kloet ER, Joëls M, Schmid W, Cole TJ (1997) Spatial learning deficits in mice with a targeted glucocorticoid receptor gene disruption. Eur J Neurosci 9:2284–2296PubMedCrossRefGoogle Scholar
  64. Oitzl MS, Fluttert M, Sutanto W and de Kloet ER (1998) Continuous blockade of brain glucocorticoid receptors facilitates spatial learning and memory in rats. Eur J Neurosci 10:3759–3766PubMedCrossRefGoogle Scholar
  65. Oitzl MS, Reichardt HM, Joëls M, de Kloet ER (2001) Point mutation in the mouse glucocorticoid receptor preventing DNA binding impairs spatial memory. Proc Natl Acad Sci USA 98:12790–12795PubMedCrossRefGoogle Scholar
  66. Olijslagers JE, de Kloet ER, Elgersma Y, Joëls M, Karst H (2008) Rapid pre- and postsynaptic effect via membran mineralocorticoid receptors increase excitability in the hippocampal CA1 area. Eur J Neurosci (in press)Google Scholar
  67. Peters A, Schweiger U, Pellerin L, Hubold C, Oltmanns KM, Conrad M, Schultes B, Born J, Fehm HL (2004) The selfish brain: competition for energy resources. Neurosci Biobehav Rev 28:143–80PubMedCrossRefGoogle Scholar
  68. Pu Z, Krugers HJ, Joëls M (2007) Corticosterone time-dependently modulates beta-adrenergic effects on long-term potentiation in the hippocampal dentate gyrus. Learn Mem 14:359–367PubMedCrossRefGoogle Scholar
  69. Reichardt HM, Kaestner KH, Tuckermann J, Kretz O, Wessely O, Bock R, Gass P, Schmid W, Herrlich P, Angel P, Schütz G (1998) DNA binding of the glucocorticoid receptor is not essential for survival. Cell 93:531–541PubMedCrossRefGoogle Scholar
  70. Revsin Y, Saravia F, Roig P, Lima A, de Kloet ER, Homo-Delarche F, De Nicola AF (2005) Neuronal and astroglial alterations in the hippocampus of a mouse model for type 1 diabetes. Brain Res 1038:22–31PubMedCrossRefGoogle Scholar
  71. Revsin Y, van Wijk D, Saravia FE, Oitzl M, De Nicola AF, de Kloet ER (2008) Adrenal hypersensitivity precedes chronic hypercorticism in Streptozotocin-induced diabetes mice. Endocrinology (in press)Google Scholar
  72. Sandi C, Merino JJ, Cordero MI, Touyarot K, Venero C (2001) Effects of chronic stress on contextual fear conditioning and the hippocampal expression of the neural cell adhesion molecule, its polysialylation, and L1. Neuroscience 102:329–339PubMedCrossRefGoogle Scholar
  73. Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89PubMedCrossRefGoogle Scholar
  74. Saravia FE, Revsin Y, Gonzalez Deniselle MC, Gonzalez SL, Roig P, Lima A, Homo-Delarche F, De Nicola AF (2002) Increased astrocyte reactivity in the hippocampus of murine models of type 1 diabetes: the nonobese diabetic (NOD) and streptozotocin-treated mice. Brain Res 957:345–353PubMedCrossRefGoogle Scholar
  75. Saravia F, Revsin Y, Lux-Lantos V, Beauquis J, Homo-Delarche F, De Nicola AF (2004) Oestradiol restores cell proliferation in dentate gyrus and subventricular zone of streptozotocin-diabetic mice. J Neuroendocrinol 16:704–710PubMedCrossRefGoogle Scholar
  76. Scribner KA, Akana SF, Walker CD, Dallman MF (1993) Streptozotocin-diabetic rats exhibit facilitated adrenocorticotropin responses to acute stress, but normal sensitivity to feedback by corticosteroids. Endocrinology 133:2667–2674PubMedCrossRefGoogle Scholar
  77. Stienstra CM, Van Der Graaf F, Bosma A, Karten YJ, Hesen W, Joëls M (1998) Synaptic transmission in the rat dentate gyrus after adrenalectomy. Neuroscience 85:1061–1071PubMedCrossRefGoogle Scholar
  78. Tirard M, Almeida OFX, Hutzler P, Melchior F, Michaelidis (2007) Sumoylation and proteasomal activity determine the transactivation properties of the mineralocorticoid receptor. Mol Cell Endocr 268:20–29CrossRefGoogle Scholar
  79. Touyarot K, Venero C, Sandi C (2004) Spatial learning impairment induced by chronic stress is related to individual differences in novelty reactivity: search for neurobiological correlates. Psychoneuroendocrinology 29:290–305PubMedCrossRefGoogle Scholar
  80. van Rossum EFC and Lamberts SW (2004) Polymorphisms in the glucocorticoid receptor gene and their associations with metabolic parameters and body composition. Recent Prog Horm Res 59:333–357PubMedCrossRefGoogle Scholar
  81. Veldhuis JD, Keenan DM, Roelfsema F, Iranmanesh A (2005) Aging-related adaptations in the corticotropic axis: modulation by gender. Endocrinol Metab Clin North Am 34:993–1014, x–xiPubMedGoogle Scholar
  82. Voorhuis TA, de Kloet ER, de Wied D (1988) The distribution and plasticity of [3H]vasopressin-labelled specific binding sites in the canary brain. Brain Res 457:148–153PubMedCrossRefGoogle Scholar
  83. Voorhuis TAM, Elands JPM, De Kloet ER (1990) Vasotocin target sites in the capsular region surrounding the nucleus robustus archistriatalis of the canary brain. J Neuroendocrinol 2:653–657CrossRefPubMedGoogle Scholar
  84. Voorhuis TA, de Kloet ER, de Wied D (1991) Effect of a vasotocin analog on singing behavior in the canary. Horm Behav 25:549–559PubMedCrossRefGoogle Scholar
  85. Wiegert O, Joëls M, Krugers H (2006) Timing is essential for rapid effects of corticosteroids on synaptic potentiation in the mouse hippocampus. Learn Mem 13:110–113PubMedCrossRefGoogle Scholar
  86. Yehuda R (2006) Advances in understanding neuroendocrine alterations in PTSD and their therapeutic implications. Ann NY Acad Sci 1071:137–166PubMedCrossRefGoogle Scholar
  87. Young EA, Abelson J, Lightman SL (2004) Cortisol pulsatility and its role in stress regulation and health. Front Neuroendocrinol 25:69–76PubMedCrossRefGoogle Scholar
  88. Zorawski M, Killcross S (2002) Posttraining glucocorticoid receptor agonist enhances memory in appetitive and aversive Pavlovian discrete-cue conditioning paradigms. Neurobiol Learn Mem 78:458–464PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • E.R de Kloet
    • 1
  • N.A. Datson
    • 1
  • Y. Revsin
    • 1
  • D.L. Champagne
    • 1
  • M.S. Oitzl
    • 1
  1. 1.Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research and LeidenUniversity Medical CenterLeidenNetherlands

Personalised recommendations