A Shape Feature Based Simplification Method for Deforming Meshes

  • Shixue Zhang
  • Enhua Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4975)


Although deforming surfaces are frequently used in numerous domains, only few works have been proposed until now for simplifying such data. In this paper, we propose a new method for generating progressive deforming meshes based on shape feature analysis and deformation area preservation. By computing the curvature and torsion of each vertex in the original model, we add the shape feature factor to its quadric error metric when calculating each QEM edge collapse cost. In order to preserve the areas with large deformation, we add deformation degree weight to the aggregated quadric errors when computing the unified edge contraction sequence. Finally, the edge contraction order is slightly adjusted to further reduce the geometric distortion for each frame. Our approach is fast, easy to implement, and as a result good quality dynamic approximations with well-preserved fine details can be generated at any given frame.


Deforming mesh LOD Mesh simplification Shape feature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bin-Shyan, J., Juin-Ling, T., Wen, H.: An Efficient and Low-error Mesh Simplification Method Based on Torsion Detection. The Visual Computer 22(1), 56–67 (2006)CrossRefGoogle Scholar
  2. 2.
    Garland, M.: Multiresolution Modeling: Survey & future opportunities. In: Proceedings of Eurographic 1999, Milano, pp. 49-65 (1999)Google Scholar
  3. 3.
    Garland, M., Willmott, A., Heckbert, P.S.: Hierarchical Face Clustering on Polygonal Surfaces. In: Proc. ACM Symp. Interactive 3D Graphics, pp. 49–58 (2001)Google Scholar
  4. 4.
    Garland, M., Heckbert, P.S.: Surface Simplification using Quadric Error Metrics. In: ACM SIGGRAPH 1997 Conference Proceedings, pp. 209–216 (1997)Google Scholar
  5. 5.
    Huang, F.C., Chen, B.Y., Chuang, Y.Y.: Progressive Deforming Meshes Based on Deformation Oriented Decimation and Dynamic Connectivity Updating. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 53–62 (2006)Google Scholar
  6. 6.
    Hoppe, H.: Progressive meshes. In: ACM SIGGRAPH 1996 Conference Proceedings, pp. 99–108 (1996)Google Scholar
  7. 7.
    Hoppe, H.: View-dependent Refinement of Progressive Meshes. In: ACM SIGGRAPH 1997 Conference Proceedings, pp. 189–198 (1997)Google Scholar
  8. 8.
    Hoppe, H.: New Quadric Metric for Simplifying Meshes with Appearance Attributes. In: Proc. IEEE Visualization 1999, pp. 59–66 (1999)Google Scholar
  9. 9.
    Jingqi, Y., Pengfei, S.: Mesh Simplification with Hierarchical Shape Analysis and Iterative Edge Contraction. IEEE Tran. on Visual. and Computer Graphics 10(2), 142–151 (2004)CrossRefGoogle Scholar
  10. 10.
    Kircher, S., Garland, M.: Progressive Multiresolution Meshes for Deforming Surfaces. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 191–200 (2005)Google Scholar
  11. 11.
    Lee, A., Moreton, H., Hoppe, H.: Displaced Subdivision Surfaces. In: SIGGRAPH 2000 Conference Proceedings, pp. 85–94 (2000)Google Scholar
  12. 12.
    Low, K.L., Tan, T.S.: Model Simplification Using Vertex-Clustering. In: Proc. ACM Symp. Interactive 3D Graphics, pp. 75–82 (1997)Google Scholar
  13. 13.
    Luebke, D., Reddy, M., Cohen, J.: Level of Detail for 3-D Graphics. Morgan Kaufmann, San Francisco (2002)Google Scholar
  14. 14.
    Mohr, A., Gleicher, M.: Deformation Sensitive Decimation. Tech. rep., University of Wisconsin (2003)Google Scholar
  15. 15.
    Neill, B.O.: Elementary Differential Geometry. Academic Press, London (1997)zbMATHGoogle Scholar
  16. 16.
    Oliver, M., van, K., Hélio, P.: A Comparative Evaluation of Metrics for Fast Mesh Simplification. Computer Graphics Forum 2006 25, 197–210 (2006)CrossRefGoogle Scholar
  17. 17.
    Shamir, A., Bajaj, C., Pascucci, V.: Multi-resolution Dynamic Meshes with Arbitrary Deformations. In: IEEE Visualization 2000 Conference Proceedings, pp. 423–430 (2000)Google Scholar
  18. 18.
    Sun-Jeong, K., Chang-Hun, K., Levin, D.: Surface Simplification Using a Discrete Curvature Norm. Computers&Graphics 26(5), 657–663 (2002)Google Scholar
  19. 19.
    Shamir, A., Pascucci, V.: Temporal and Spatial Level of Details for Dynamic Meshes. In: Proceedings of ACM Symp. on Virtual Reality Software and Technology, pp. 77–84 (2001)Google Scholar
  20. 20.
    Spivak, M.: A Comprehensive Introduction to Differential Geometry, 3rd edn., vol. 3. Publish or Perish (1999)Google Scholar
  21. 21.
    Schroeder, W.J., Zarge, J.A., Lorensen, W.E.: Decimation of Triangle Meshes. In: ACM Computer Graphics (SIGGRAPH 1992 Conference Proceedings), vol. 26(2), pp. 65–70 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Shixue Zhang
    • 1
  • Enhua Wu
    • 1
    • 2
  1. 1.Dept. of Computer and Information ScienceUniversity of MacauMacaoChina
  2. 2.State Key Lab. of Computer Science, Institute of SoftwareChinese Academy of SciencesChina

Personalised recommendations