Advertisement

Deformation and Smooth Joining of Mesh Models for Cardiac Surgical Simulation

  • Hao Li
  • Wee Kheng Leow
  • Ing-Sh Chiu
  • Shu-Chien Huang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4975)

Abstract

This paper focuses on an important aspect of cardiac surgical simulation, which is the deformation of mesh models to form smooth joins between them. A novel algorithm based on the Laplacian deformation method is developed. It extends the Laplacian method to handle deformation of 2-manifold mesh models with 1-D boundaries, and joining of 1-D boundaries to form smooth joins. Test results show that the algorithm can produce a variety of smooth joins common in cardiac surgeries, and it is efficient for practical applications.

Keywords

predictive surgical simulation Laplacian mesh deformation smooth join discrete differential geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Castañeda, M.A.P., Cosío, F.A.: Deformable model of the prostate for TURP surgery simulation. Computers & Graphics 28(5), 767–777 (2004)CrossRefGoogle Scholar
  2. 2.
    Crouch, J.R., Merriam, J.C., Crouch, E.R.: Finite element model of cornea deformation. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 591–598. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Gardner, T.J., Spray, T.L.: Operative Cardiac Surgery, 5th edn. Arnold (2004)Google Scholar
  4. 4.
    Gladilin, E., Ivanov, A., Roginsky, V.: Generic approach for biomechanical simulation of typical boundary value problems in cranio-maxillofacial surgery planning. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 380–388. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Kuhnapfel, U., Cakmak, H., Maass, H.: Endoscopic surgery training using virtual reality and deformable tissue simulation. Computers & Graphics 24, 671–682 (2000)CrossRefGoogle Scholar
  6. 6.
    Liepa, P.: Filling holes in meshes. In: Proceedings of Eurographics/ACM SIGGRAPH symposium on Geometry processing, pp. 200–205 (2003)Google Scholar
  7. 7.
    MacCracken, R., Joy, K.I.: Free-form deformations with lattices of arbitrary topology. In: Proc. of ACM SIGGRAPH, pp. 181–188 (1996)Google Scholar
  8. 8.
    Masuda, H., Yoshioka, Y., Furukawa, Y.: Interactive mesh deformation using equality-constrained least squares. Computers & Graphics 30(6), 936–946 (2006)CrossRefGoogle Scholar
  9. 9.
    Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.-C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 35–57. Springer, Heidelberg (2002)Google Scholar
  10. 10.
    Mosegaard, J.: LR-spring mass model for cardiac surgical simulation. In: Proc. of 12th Conf. on Medicine Meets Virtual Reality, pp. 256–258 (2004)Google Scholar
  11. 11.
    Park, S., Guo, X., Shin, H., Qin, H.: Surface completion for shape and appearance. The Visual Computer 22, 168–180 (2006)CrossRefGoogle Scholar
  12. 12.
    Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. In: Proc. of ACM SIGGRAPH, pp. 151–160 (1986)Google Scholar
  13. 13.
    Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rössl, C., Seidel, H.-P.: Laplacian surface editing. In: Proc. of Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 175–184 (2004)Google Scholar
  14. 14.
    Weng, Y., Xu, W., Wu, Y., Zhou, K., Guo, B.: 2D shape deformation using nonlinear least squares optimization. The Visual Computer 22(9), 653–660 (2006)CrossRefGoogle Scholar
  15. 15.
    Williams, C., Kakadaris, I.A., Ravi-Chandar, K., Miller, M.J., Patrick, J.C.W.: Simulation Studies for Predicting Surgical Outcomes in Breast Reconstructive Surgery. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 9–16. Springer, Heidelberg (2003)Google Scholar
  16. 16.
    Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.-Y.: Mesh editing with Poisson-based gradient field manipulation. ACM Trans. on Graphics 23(3), 644–651 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hao Li
    • 1
  • Wee Kheng Leow
    • 1
  • Ing-Sh Chiu
    • 2
  • Shu-Chien Huang
    • 2
  1. 1.Dept. of Computer ScienceNational University of Singapore,Computing 1Singapore
  2. 2.Dept. of SurgeryNational Taiwan University HospitalTaipeiTaiwan, R.O.C.

Personalised recommendations