Bicubic G1 Interpolation of Irregular Quad Meshes Using a 4-Split

  • Stefanie Hahmann
  • Georges-Pierre Bonneau
  • Baptiste Caramiaux
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4975)


We present a piecewise bi-cubic parametric G1 spline surface interpolating the vertices of any irregular quad mesh of arbitrary topological type. While tensor product surfaces need a chess boarder parameterization they are not well suited to model surfaces of arbitrary topology without introducing singularities. Our spline surface consists of tensor product patches, but they can be assembled with G1-continuity to model any non-tensor-product configuration. At common patch vertices an arbitrary number of patches can meet. The parametric domain is built by 4-splitting one unit square for each input quadrangular face. This key idea of our method enables to define a very low degree surface, that interpolates the input vertices and results from an explicit and local procedure : no global linear system has to be solved.


G1 continuity arbitrary topology interpolation quad meshes Bézier surfaces 4-split 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Catmull, E., Clark, J.: Recursive generated b-spline surfaces on arbitrary topological meshes. Computer Aided-Design 10, 350–355 (1978)CrossRefGoogle Scholar
  2. 2.
    Chiyokura, H., Kimura, F.: Design of solids with free-form surfaces. In: SIGGRAPH 1983: Proceedings of the 10th annual conference on Computer graphics and interactive techniques, pp. 289–298 (1983)Google Scholar
  3. 3.
    Davis, P.: Circulant Matrices. Wiley, Chichester (1979)zbMATHGoogle Scholar
  4. 4.
    Dyn, N., Levine, D., Gregory, J.A.: A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. Graph. 9(2), 160–169 (1990)zbMATHCrossRefGoogle Scholar
  5. 5.
    Farin, G.: Curves and Surfaces for Computer Aided Geometric Design, 4th edn. Academic Press, New York (1996)Google Scholar
  6. 6.
    Hahmann, S., Bonneau, G.-P.: Triangular G1 interpolation by 4-splitting domain triangles. Computer Aided Geometric Design 17(8), 731–757 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hahmann, S., Bonneau, G.-P., and Caramiaux, B.: Report on G1 interpolation of irregular quad meshes. Technical Report IMAG RR 1087-I, Institut d’Informatique et de Mathématiques Appliquées de Grenoble, France (2007)Google Scholar
  8. 8.
    Hahn, J.: Filling polygonal holes with rectangular patches. In: Theory and practice of geometric modeling, pp. 81–91. Springer, New York (1989)Google Scholar
  9. 9.
    Halstead, M., Kass, M., DeRose, T.: Efficient, fair interpolation using catmull-clark surfaces. In: SIGGRAPH 1993: Proceedings of the 20th annual conference on Computer graphics and interactive techniques, pp. 35–44 (1993)Google Scholar
  10. 10.
    Liu, Q., Sun, T.C.: G1 interpolation of mesh curves. Computer-Aided Design 26(4), 259–267 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Liu, Y., Mann, S.: Approximate continuity for parametric bézier patches. In: SPM 2007: Proceedings of the 2007 ACM symposium on Solid and physical modeling, Beijing, China, pp. 315–321 (2007)Google Scholar
  12. 12.
    Loop, C.: A G1 triangular spline surface of arbitrary topological type. Computer Aided Geometric Design 11, 303–330 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Loop, C., DeRose, T.D.: Generalized b-spline surfaces of arbitrary topology. In: SIGGRAPH 1990: Proceedings of the 17th annual conference on Computer graphics and interactive techniques, pp. 347–356 (1990)Google Scholar
  14. 14.
    Peters, J.: Smooth interpolation of a mesh of curves. Constructive Approx. 7, 221–246 (1991)zbMATHCrossRefGoogle Scholar
  15. 15.
    Peters, J.: C 1 surface splines. SIAM Journal of Numerical Analysis 32(2), 645–666 (1995)zbMATHCrossRefGoogle Scholar
  16. 16.
    Peters, J.: C2 free-form surfaces of degree (3, 5). Computer Aided Geometric Design 19(2), 113–126 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Piper, B.: Visually smooth interpolation with triangular bézier patches. In: Farin, G. (ed.) Geometric Modeling: Algorithms and new Trends, pp. 221–233. SIAM, Philadelphia (1987)Google Scholar
  18. 18.
    Reif, U.: Biquadratic g-spline surfaces. Computer Aided Geometric Design 12(2), 193–205 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Sarraga, R.F.: G1 interpolation of generally unrestricted cubic bézier curves. Computer Aided Geometric Desgn 4(1-2), 23–39 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Van Wijk, J.J.: Bicubic patches for approximating non-rectangular control-point meshes. Computer Aided Geometric Design 3(1), 1–13 (1986)zbMATHCrossRefGoogle Scholar
  21. 21.
    Zorin, D., Schröder, P., Sweldens, W.: Interpolating subdivision for meshes with arbitrary topology. In: SIGGRAPH 1996: Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pp. 189–192 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Stefanie Hahmann
    • 1
  • Georges-Pierre Bonneau
    • 2
  • Baptiste Caramiaux
    • 1
  1. 1.Grenoble INP, Laboratoire Jean Kuntzmann, CNRS UMR 5224Grenoble Cedex 9France
  2. 2.Université Joseph Fourier, INRIA, Laboratoire Jean Kuntzmann, CNRS UMR 5224Grenoble Cedex 9France

Personalised recommendations