On Interpolation by Spline Curves with Shape Parameters

  • Miklós Hoffmann
  • Imre Juhász
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4975)

Abstract

Interpolation of a sequence of points by spline curves generally requires the solution of a large system of equations. In this paper we provide a method which requires only local computation instead of a global system of equations and works for a large class of curves. This is a generalization of a method which previously developed for B-spline, NURBS and trigonometric CB-spline curves. Moreover, instead of numerical shape parameters we provide intuitive, user-friendly, control point based modification of the interpolating curve and the possibility of optimization as well.

Keywords

interpolation spline curve shape parameter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barsky, B.A., Greenberg, D.P.: Determining a set of B-spline control vertices to generate an interpolating surface. Computer Graphics and Image Processing 14, 203–226 (1980)CrossRefGoogle Scholar
  2. 2.
    Hoschek, J., Lasser, D.: Fundamentals of CAGD, AK Peters, Wellesley, MA (1993)Google Scholar
  3. 3.
    Lavery, J.E.: Univariate cubic Lp splines and shape-preserving multiscale interpolation by univariate cubic L1 splines. Computer Aided Geometric Design 17, 319–336 (2000)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Ma, W., Kruth, J.P.: NURBS curve and surface fitting and interpolation. In: Daehlen, M., Lyche, T., Schumaker, L. (eds.) Mathematical Methods for Curves and Surfaces, Vanderbilt University Press, Nashville & London (1995)Google Scholar
  5. 5.
    Juhász, I., Hoffmann, M.: The effect of knot modifications on the shape of B-spline curves. Journal for Geometry and Graphics 5, 111–119 (2001)MathSciNetMATHGoogle Scholar
  6. 6.
    Juhász, I., Hoffmann, M.: Modifying a knot of B-spline curves. Computer Aided Geometric Design 20, 243–245 (2003)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Juhász, I., Hoffmann, M.: On parametrization of interpolating curves. Journal of Computational and Applied Mathematics (2007), doi:10.1016/j.cam.2007.05.019Google Scholar
  8. 8.
    Kaklis, P.D., Sapidis, N.S.: Convexity-preserving interpolatory parametric splines of non-uniform polynomial degree. Computer Aided Geometric Design 12, 1–26 (1995)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Kong, V.P., Ong, B.H.: Shape preserving F3 curve interpolation. Computer Aided Geometric Design 19, 239–256 (2002)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Li, A.: Convexity preserving interpolation. Computer Aided Geometric Design 16, 127–147 (1999)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Piegl, L., Tiller, W.: The NURBS Book. Springer, Berlin (1995)MATHGoogle Scholar
  12. 12.
    Sapidis, N., Farin, G.: Automatic fairing algorithm for B-spline curves. Computer-Aided Design 22, 121–129 (1990)CrossRefMATHGoogle Scholar
  13. 13.
    Tai, C.-L., Barsky, B.A., Loe, K.-F.: An interpolation method with weight and relaxation parameters. In: Cohen, A., Rabut, C., Schumaker, L.L. (eds.) Curve and Surface Fitting: Saint-Malo 1999, pp. 393–402. Vanderbilt Univ. Press, Nashville (2000)Google Scholar
  14. 14.
    Tai, C.-L., Wang, G.-J.: Interpolation with slackness and continuity control and convexity-preservation using singular blending. J. Comp. Appl. Math. 172, 337–361 (2004)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Pan, Y.-J., Wang, G.-J.: Convexity-preserving interpolation of trigonometric polynomial curves with shape parameter. Journal of Zhejiang University Science A 8, 1199–1209 (2007)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Miklós Hoffmann
    • 1
  • Imre Juhász
    • 2
  1. 1.Institute of Mathematics and Computer ScienceKároly Eszterházy CollegeEgerHungary
  2. 2.Department of Descriptive GeometryUniversity of MiskolcMiskolc-EgyetemvárosHungary

Personalised recommendations