# Finite Element Methods for Geometric Modeling and Processing Using General Fourth Order Geometric Flows

• Guoliang Xu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4975)

## Abstract

A variational formulation of a general form fourth order geometric partial differential equation is derived, and based on which a mixed finite element method is developed. Several surface modeling problems, including surface blending, hole filling and surface mesh refinement with the G 1 continuity, are taken into account. The used geometric partial differential equation is universal, containing several well-known geometric partial differential equations as its special cases. The proposed method is general which can be used to construct surfaces for geometric design as well as simulate the behaviors of various geometric PDEs. Experimental results show that it is simple, efficient and gives very desirable results.

## Keywords

Geometric PDE Surface blending hole filling Surface mesh refinement Mixed finite element method

## References

1. 1.
Bajaj, C., Xu, G.: Anisotropic diffusion of surface and functions on surfaces. ACM Transaction on Graphics 22(1), 4–32 (2003)
2. 2.
Bajaj, C., Xu, G., Warren, J.: Acoustics Scattering on Arbitrary Manifold Surfaces. In: Proceedings of Geometric Modeling and Processing, Theory and Application, Japan, pp. 73–82 (2002)Google Scholar
3. 3.
Bloor, M.I.G., Wilson, M.J.: Generating blend surfaces using partial differential equations. Computer Aided Design 21(3), 165–171 (1989)
4. 4.
Bloor, M.I.G., Wilson, M.J.: Using partial differential equations to generate free-form surfaces. Computer Aided Design 22(4), 221–234 (1990)
5. 5.
Chavel, I.: Riemannian Geometry – a Modern Introduction. Cambridge University Press, Cambridge (1993)
6. 6.
Cirak, F., Ortiz, M.: C 1-conforming subdivision elements for finite deformation thin-shell analysis. Internat. J. Numer. Methods Engrg. 51(7), 813–833 (2001)
7. 7.
Cirak, F., Ortiz, M., Schroder, P.: Subdivision Surfaces: A New Paradigm for Thin-Shell Finite-Element Analysis. Internat. J. Numer. Methods Engrg. 47, 2039–2072 (2000)
8. 8.
Clarenz, U., Diewald, U., Dziuk, G., Rumpf, M., Rusu, R.: A finite element method for surface restoration with boundary conditions. Computer Aided Geometric Design 21(5), 427–445 (2004)
9. 9.
Clarenz, U., Diewald, U., Rumpf, M.: Anisotropic geometric diffusion in surface processing. In: Proceedings of Viz2000, IEEE Visualization, Salt Lake City, Utah, pp. 397–405 (2000)Google Scholar
10. 10.
Deckelnick, K., Dziuk, G.: A fully discrete numerical scheme for weighted mean curvature flow. Numerische Mathematik 91, 423–452 (2002)
11. 11.
Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: SIGGRAPH 1999, Los Angeles, USA, pp. 317–324 (1999)Google Scholar
12. 12.
do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)
13. 13.
do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Boston, Basel, Berlin (1992)
14. 14.
Du, H., Qin, H.: Direct manipulation and interactive sculpting of PDE surfaces.  19(3), 261–270 (2000)Google Scholar
15. 15.
Du, H., Qin, H.: Dynamic PDE-based surface design using geometric and physical constraint. Graphical Models 67(1), 43–71 (2005)
16. 16.
Dziuk, G.: An algorithm for evolutionary surfaces. Numerische Mathematik 58, 603–611 (1991)
17. 17.
Giaquinta, M., Hildebrandt, S.: Calculus of Variations. A Series of Comprehensive Studies in Mathematics, vol. I(310). Springer, Berlin (1996)Google Scholar
18. 18.
Kobbelt, L., Hesse, T., Prautzsch, H., Schweizerhof, K.: Iterative Mesh Generation for FE-computation on Free Form Surfaces. Engng. Comput. 14, 806–820 (1997)
19. 19.
Lowe, T., Bloor, M., Wilson, M.: Functionality in blend design. Computer-Aided Design 22(10), 655–665 (1990)
20. 20.
Saad, Y.: Iterative Methods for Sparse Linear Systems. Second Edition with corrections (2000)Google Scholar
21. 21.
Schneider, R., Kobbelt, L.: Generating Fair Meshes with G 1 Boundary conditions. In: Geometric Modeling and Processing, Hong Kong, China, pp. 251–261 (2000)Google Scholar
22. 22.
Schneider, R., Kobbelt, L.: Geometric fairing of irregular meshes for free-form surface design. Computer Aided Geometric Design 18(4), 359–379 (2001)
23. 23.
Stam, J.: Fast Evaluation of Loop Triangular Subdivision Surfaces at Arbitrary Parameter Values. In: SIGGRAPH 1998 Proceedings (1998), CD-ROM supplementGoogle Scholar
24. 24.
Ugail, H., Bloor, M., Wilson, M.: Techniques for interactive design using the PDE method. ACM Transaction on Graphics 18(2), 195–212 (1999)
25. 25.
Xu, G., Pan, Q., Bajaj, C.L.: Discrete surface modelling using partial differential equations. Computer Aided Geometric Design 23(2), 125–145 (2006)
26. 26.
Xu, G., Pan, Q.: G 1 Surface Modelling Using Fourth Order Geometric Flows. Computer-Aided Design 38(4), 392–403 (2006)
27. 27.
Xu, G., Zhang, Q.: Construction of Geometric Partial Differential Equations in Computational Geometry. Mathematica Numerica Sinica 28(4), 337–356 (2006)
28. 28.
Xu, G., Zhang, Q.: A General Framework for Surface Modeling Using Geometric Partial Differential Equations. In: Computer Aided Geometric Design (to appear, 2007)Google Scholar
29. 29.
Zhang, Q., Xu, G.: Geometric partial differential equations for minimal curvature variation surfaces. In: Research Report No. ICM-06-03. Institute of Computational Mathematics, Chinese Academy of Sciences (2006)Google Scholar