Advertisement

Finite Element Methods for Geometric Modeling and Processing Using General Fourth Order Geometric Flows

  • Guoliang Xu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4975)

Abstract

A variational formulation of a general form fourth order geometric partial differential equation is derived, and based on which a mixed finite element method is developed. Several surface modeling problems, including surface blending, hole filling and surface mesh refinement with the G 1 continuity, are taken into account. The used geometric partial differential equation is universal, containing several well-known geometric partial differential equations as its special cases. The proposed method is general which can be used to construct surfaces for geometric design as well as simulate the behaviors of various geometric PDEs. Experimental results show that it is simple, efficient and gives very desirable results.

Keywords

Geometric PDE Surface blending hole filling Surface mesh refinement Mixed finite element method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bajaj, C., Xu, G.: Anisotropic diffusion of surface and functions on surfaces. ACM Transaction on Graphics 22(1), 4–32 (2003)CrossRefGoogle Scholar
  2. 2.
    Bajaj, C., Xu, G., Warren, J.: Acoustics Scattering on Arbitrary Manifold Surfaces. In: Proceedings of Geometric Modeling and Processing, Theory and Application, Japan, pp. 73–82 (2002)Google Scholar
  3. 3.
    Bloor, M.I.G., Wilson, M.J.: Generating blend surfaces using partial differential equations. Computer Aided Design 21(3), 165–171 (1989)zbMATHCrossRefGoogle Scholar
  4. 4.
    Bloor, M.I.G., Wilson, M.J.: Using partial differential equations to generate free-form surfaces. Computer Aided Design 22(4), 221–234 (1990)CrossRefGoogle Scholar
  5. 5.
    Chavel, I.: Riemannian Geometry – a Modern Introduction. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  6. 6.
    Cirak, F., Ortiz, M.: C 1-conforming subdivision elements for finite deformation thin-shell analysis. Internat. J. Numer. Methods Engrg. 51(7), 813–833 (2001)zbMATHCrossRefGoogle Scholar
  7. 7.
    Cirak, F., Ortiz, M., Schroder, P.: Subdivision Surfaces: A New Paradigm for Thin-Shell Finite-Element Analysis. Internat. J. Numer. Methods Engrg. 47, 2039–2072 (2000)zbMATHCrossRefGoogle Scholar
  8. 8.
    Clarenz, U., Diewald, U., Dziuk, G., Rumpf, M., Rusu, R.: A finite element method for surface restoration with boundary conditions. Computer Aided Geometric Design 21(5), 427–445 (2004)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Clarenz, U., Diewald, U., Rumpf, M.: Anisotropic geometric diffusion in surface processing. In: Proceedings of Viz2000, IEEE Visualization, Salt Lake City, Utah, pp. 397–405 (2000)Google Scholar
  10. 10.
    Deckelnick, K., Dziuk, G.: A fully discrete numerical scheme for weighted mean curvature flow. Numerische Mathematik 91, 423–452 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: SIGGRAPH 1999, Los Angeles, USA, pp. 317–324 (1999)Google Scholar
  12. 12.
    do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)zbMATHGoogle Scholar
  13. 13.
    do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Boston, Basel, Berlin (1992)zbMATHGoogle Scholar
  14. 14.
    Du, H., Qin, H.: Direct manipulation and interactive sculpting of PDE surfaces.  19(3), 261–270 (2000)Google Scholar
  15. 15.
    Du, H., Qin, H.: Dynamic PDE-based surface design using geometric and physical constraint. Graphical Models 67(1), 43–71 (2005)zbMATHCrossRefGoogle Scholar
  16. 16.
    Dziuk, G.: An algorithm for evolutionary surfaces. Numerische Mathematik 58, 603–611 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Giaquinta, M., Hildebrandt, S.: Calculus of Variations. A Series of Comprehensive Studies in Mathematics, vol. I(310). Springer, Berlin (1996)Google Scholar
  18. 18.
    Kobbelt, L., Hesse, T., Prautzsch, H., Schweizerhof, K.: Iterative Mesh Generation for FE-computation on Free Form Surfaces. Engng. Comput. 14, 806–820 (1997)zbMATHCrossRefGoogle Scholar
  19. 19.
    Lowe, T., Bloor, M., Wilson, M.: Functionality in blend design. Computer-Aided Design 22(10), 655–665 (1990)zbMATHCrossRefGoogle Scholar
  20. 20.
    Saad, Y.: Iterative Methods for Sparse Linear Systems. Second Edition with corrections (2000)Google Scholar
  21. 21.
    Schneider, R., Kobbelt, L.: Generating Fair Meshes with G 1 Boundary conditions. In: Geometric Modeling and Processing, Hong Kong, China, pp. 251–261 (2000)Google Scholar
  22. 22.
    Schneider, R., Kobbelt, L.: Geometric fairing of irregular meshes for free-form surface design. Computer Aided Geometric Design 18(4), 359–379 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Stam, J.: Fast Evaluation of Loop Triangular Subdivision Surfaces at Arbitrary Parameter Values. In: SIGGRAPH 1998 Proceedings (1998), CD-ROM supplementGoogle Scholar
  24. 24.
    Ugail, H., Bloor, M., Wilson, M.: Techniques for interactive design using the PDE method. ACM Transaction on Graphics 18(2), 195–212 (1999)CrossRefGoogle Scholar
  25. 25.
    Xu, G., Pan, Q., Bajaj, C.L.: Discrete surface modelling using partial differential equations. Computer Aided Geometric Design 23(2), 125–145 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Xu, G., Pan, Q.: G 1 Surface Modelling Using Fourth Order Geometric Flows. Computer-Aided Design 38(4), 392–403 (2006)CrossRefGoogle Scholar
  27. 27.
    Xu, G., Zhang, Q.: Construction of Geometric Partial Differential Equations in Computational Geometry. Mathematica Numerica Sinica 28(4), 337–356 (2006)MathSciNetGoogle Scholar
  28. 28.
    Xu, G., Zhang, Q.: A General Framework for Surface Modeling Using Geometric Partial Differential Equations. In: Computer Aided Geometric Design (to appear, 2007)Google Scholar
  29. 29.
    Zhang, Q., Xu, G.: Geometric partial differential equations for minimal curvature variation surfaces. In: Research Report No. ICM-06-03. Institute of Computational Mathematics, Chinese Academy of Sciences (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Guoliang Xu
    • 1
  1. 1.State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics, Academy of Mathematics and System SciencesChinese Academy of SciencesBeijingChina

Personalised recommendations