On the Fidelity of 802.11 Packet Traces

  • Aaron Schulman
  • Dave Levin
  • Neil Spring
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4979)

Abstract

Packet traces from 802.11 wireless networks are incomplete both fundamentally, because antennas do not pick up every transmission, and practically, because the hardware and software of collection may be under provisioned. One strategy toward improving the completeness of a trace of wireless network traffic is to deploy several monitors; these are likely to capture (and miss) different packets. Merging these traces into a single, coherent view requires inferring access point (AP) and client behavior; these inferences introduce errors.

In this paper, we present methods to evaluate the fidelity of merged and independent wireless network traces. We show that wireless traces contain sufficient information to measure their completeness and clock accuracy. Specifically, packet sequence numbers indicate when packets have been dropped, and AP beacon intervals help determine the accuracy of packet timestamps. We also show that trace completeness and clock accuracy can vary based on load. We apply these metrics to evaluate fidelity in two ways: (1) to visualize the completeness of different 802.11 traces, which we show with several traces available on CRAWDAD and (2) to estimate the uncertainty in the time measurements made by the individual monitors.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguayo, D., Bicket, J., Biswas, S., Judd, G., Morris, R.: Link-level measurements from an 802.11b mesh network. In: SIGCOMM (2004)Google Scholar
  2. 2.
    ANSI/IEEE. Std 802.11 (1999)Google Scholar
  3. 3.
    Biswas, S., Morris, R.: Opportunistic routing in multi-hop wireless networks. In: SIGCOMM (2005)Google Scholar
  4. 4.
    Cheng, Y.-C., Afanasyev, M., Verkaik, P., Benkö, P., Chiang, J., Snoeren, A.C., Savage, S., Voelker, G.M.: Automating cross-layer diagnosis of enterprise wireless networks. In: SIGCOMM (2007)Google Scholar
  5. 5.
    Cheng, Y.-C., Bellardo, J., Benkö, P., Chiang, J., Snoeren, A.C., Voelker, G.M., Savage, S.: Jigsaw: Solving the puzzle of enterprise 802.11 analysis. In: SIGCOMM (2006)Google Scholar
  6. 6.
    Clancy, T., Walker, B.: MeshTest: Laboratory-based wireless testbed for large topologies. In: TridentCom (2007)Google Scholar
  7. 7.
  8. 8.
    Haeberlen, A., Mislove, A., Post, A., Druschel, P.: Fallacies in evaluating decentralized systems. In: IPTPS (2006)Google Scholar
  9. 9.
    Jardosh, A., Ramachandran, K.N., Almeroth, K.C., Belding, E.: CRAWDAD data set ucsb/ietf (v. 2005-10-19) (October 2005), Downloaded from http://crawdad.cs.dartmouth.edu/ucsb/ietf2005
  10. 10.
    Mahajan, R., Rodrig, M., Wetherall, D., Zahorjan, J.: Analyzing the MAC-level behavior of wireless networks in the wild. In: SIGCOMM (2006)Google Scholar
  11. 11.
    Navidi, W., Camp, T.: Stationary distributions for random waypoint models. IEEE Transactions on Mobile Computing 3(1) (2004)Google Scholar
  12. 12.
    Paxson, V.: Strategies for sound Internet measurement. In: IMC (2004)Google Scholar
  13. 13.
    Phillips, C., Singh, S.: CRAWDAD data set pdx/vwave (v. 2007-08-13) (August 2007), Downloaded from http://crawdad.cs.dartmouth.edu/pdx/vwave
  14. 14.
    Rodrig, M., Reis, C., Mahajan, R., Wetherall, D., Zahorjan, J.: Measurement-based characterization of 802.11 in a hotspot setting. In: E-WIND (2005)Google Scholar
  15. 15.
    Rodrig, M., Reis, C., Mahajan, R., Wetherall, D., Zahorjan, J., Lazowska, E.: CRAWDAD data set In: uw/sigcomm2004 (v. 2006-10-17) (October 2006), Downloaded from http://crawdad.cs.dartmouth.edu/uw/sigcomm2004
  16. 16.
    Yeo, J., Banerjee, S., Agrawala, A.: Measuring traffic on the wireless medium: Experience and pitfalls. Technical report, CS-TR 4421, University of Maryland, College Park (December 2002) http://hdl.handle.net/1903/124
  17. 17.
    Yeo, J., Youssef, M., Agrawala, A.: A framework for wireless LAN monitoring and its applications. In: WiSE (2004)Google Scholar
  18. 18.
    Yoon, J., Liu, M., Noble, B.: Random waypoint considered harmful. In: INFOCOM (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Aaron Schulman
    • 1
  • Dave Levin
    • 1
  • Neil Spring
    • 1
  1. 1.Department of Computer ScienceUniversity of Maryland, College Park 

Personalised recommendations