Indistinguishability and First-Order Logic

  • Skip Jordan
  • Thomas Zeugmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4978)

Abstract

The “richness” of properties that are indistinguishable from first-order properties is investigated. Indistinguishability is a concept of equivalence among properties of combinatorial structures that is appropriate in the context of testability. All formulas in a restricted class of second-order logic are shown to be indistinguishable from first-order formulas. Arbitrarily hard properties, including RE-complete properties, that are indistinguishable from first-order formulas are shown to exist. Implications on the search for a logical characterization of the testable properties are discussed.

Keywords

Property testing logic graph theory descriptive complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allender, E., Balcázar, J.L., Immerman, N.: A first-order isomorphism theorem. SIAM J. Comput. 26(2), 539–556 (1997)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient testing of large graphs. Combinatorica 20(4), 451–476 (2000)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alon, N., Fischer, E., Newman, I., Shapira, A.: A combinatorial characterization of the testable graph properties: It’s all about regularity. In: STOC 2006: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 251–260. ACM, New York, NY, USA (2006)Google Scholar
  4. 4.
    Alon, N., Krivelevich, M., Newman, I., Szegedy, M.: Regular languages are testable with a constant number of queries. SIAM J. Comput. 30(6), 1842–1862 (2001)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Alon, N., Shapira, A.: A characterization of the (natural) graph properties testable with one-sided error. In: Proceedings, 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2005, pp. 429–438. IEEE Computer Society Press, Los Alamitos (2005)CrossRefGoogle Scholar
  6. 6.
    Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within NC1. J. of Comput. Syst. Sci. 41(3), 274–306 (1990)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical problems. J. of Comput. Syst. Sci. 47(3), 549–595 (1993)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chockler, H., Kupferman, O.: ω-regular languages are testable with a constant number of queries. Theoret. Comput. Sci. 329(1-3), 71–92 (2004)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Enderton, H.B.: A Mathematical Introduction to Logic, 2nd edn. Academic Press, London (2000)Google Scholar
  10. 10.
    Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets. In: Karp, R.M. (ed.) Complexity of Computation, SIAM-AMS Proceedings, vol. VII, Amer. Mathematical Soc., pp. 43–73 (1974)Google Scholar
  11. 11.
    Fagin, R., Stockmeyer, L.J., Vardi, M.Y.: On monadic NP vs. monadic co-NP. Inform. Comput. 120(1), 78–92 (1995)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Fischer, E.: The art of uninformed decisions. Bulletin of the European Association for Theoretical Computer Science 75(97) (October 2001); Columns: Computational ComplexityGoogle Scholar
  13. 13.
    Fischer, E.: Testing graphs for colorability properties. Random Struct. Algorithms 26(3), 289–309 (2005)MATHCrossRefGoogle Scholar
  14. 14.
    Freivalds, R.: Fast probabilistic algorithms. In: Becvar, J. (ed.) MFCS 1979. LNCS, vol. 74, pp. 57–69. Springer, Heidelberg (1979)Google Scholar
  15. 15.
    Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Mathematical Systems Theory 17(1), 13–27 (1984)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. J. ACM 45(4), 653–750 (1998)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Goldreich, O., Trevisan, L.: Three theorems regarding testing graph properties. Random Struct. Algorithms 23(1), 23–57 (2003)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms. Transactions of the American Mathematical Society 117, 285–306 (1965)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Hromkovič, J.: Design and Analysis of Randomized Algorithms: Introduction to Design Paradigms. Springer, Heidelberg (2005)Google Scholar
  20. 20.
    Rödl, V., Schacht, M.: Property testing in hypergraphs and the removal lemma. In: STOC 2007: Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pp. 488–495. ACM, New York, NY, USA (2007)CrossRefGoogle Scholar
  21. 21.
    Ron, D.: Property testing ch. 15. In: Rajasekaran, S., Pardalos, P.M., Reif, J.H., Rolim, J. (eds.) Handbook of Randomized Computing, vol. II, ch. 15, pp. 597–649. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  22. 22.
    Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applications to program testing. SIAM J. Comput. 25(2), 252–271 (1996)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Skip Jordan
    • 1
  • Thomas Zeugmann
    • 1
  1. 1.Division of Computer ScienceHokkaido UniversitySapporoJapan

Personalised recommendations