Balancing Traffic Load Using One-Turn Rectilinear Routing

  • Stephane Durocher
  • Evangelos Kranakis
  • Danny Krizanc
  • Lata Narayanan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4978)


We consider the problem of load-balanced routing, where a dense network is modelled by a continuous square region and origin and destination nodes correspond to pairs of points in that region. The objective is to define a routing policy that assigns a continuous path to each origin-destination pair while minimizing the traffic, or load, passing through any single point. While the average load is minimized by straight-line routing, such a routing policy distributes the load non-uniformly, resulting in higher load near the center of the region. We consider one-turn rectilinear routing policies that divert traffic away from regions of heavier load, resulting in up to a 33% reduction in the maximum load while simultaneously increasing the path lengths by an average of less than 28%. Our policies are simple to implement, being both local and oblivious. We provide a lower bound that shows that no one-turn rectilinear routing policy can reduce the maximum load by more than 39% and we give a polynomial-time procedure for approximating the optimal randomized policy.


Wireless Network Maximum Load Average Load Communication Pattern Intermediate Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks. Wireless Networks 7, 609–616 (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Broch, J., Johnson, D., Maltz, D.: The dynamic source routing protocol for mobile ad hoc networks (1998): Internet-draft, draft-ietf-manet-dsr-00.txtGoogle Scholar
  3. 3.
    Busch, C., Magdon-Ismail, M., Xi, J.: Oblivious routing on geometric networks. In: Proc. ACM SPAA, vol. 17 (2005)Google Scholar
  4. 4.
    Chung, F.R.K., Coffman Jr., E.G., Reiman, M.I., Simon, B.: The forwarding index of communication networks. IEEE Trans. Inf. Th. 33(2), 224–232 (1987)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Dahl, J.: Cvxopt: A python package for convex optimization. In: Proc. Eur. Conf. Op. Res. (2006)Google Scholar
  6. 6.
    Gao, J., Zhang, L.: Load balanced short path routing in wireless networks. In: Proc. IEEE INFOCOM, vol. 23, pp. 1099–1108 (2004)Google Scholar
  7. 7.
    Gao, J., Zhang, L.: Tradeoffs between stretch factor and load balancing ratio in routing on growth restricted graphs. In: Proc. ACM PODC, pp. 189–196 (2004)Google Scholar
  8. 8.
    Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Trans. Inf. Th. 46, 388–404 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Heydemann, M.C., Meyer, J.C., Sotteau, D.: On forwarding indices of networks. Disc. App. Math. 23, 103–123 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Hyytiä, E., Lassila, P., Virtamo, J.: Spatial node distribution of the random waypoint mobility model with applications. IEEE Trans. Mob. Comp. 6, 680–694 (2006)CrossRefGoogle Scholar
  11. 11.
    Jinyang, L., Blake, C., Couto, D.D., Lee, H., Morris, R.: Capacity of ad hoc wireless networks. In: Proc. ACM MOBICOM (2001)Google Scholar
  12. 12.
    Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. In: Proc. CCCG, pp. 51–54 (1999)Google Scholar
  13. 13.
    Meyer auf der Heide, F., Schindelhauer, C., Volbert, K., Grunwald, M.: Energy, congestion, and dilation in radio networks. In: Proc. ACM SPAA, pp. 230–237 (2002)Google Scholar
  14. 14.
    Park, V., Corson, S.: A highly adaptive distributed routing algorithm for mobile wireless networks. In: Proc. IEEE INFOCOM, pp. 1405–1413 (1997)Google Scholar
  15. 15.
    Pham, P.P., Perreau, S.: Performance analysis of reactive shortest path and multi-path routing mechanism with load balance. In: Proc. IEEE INFOCOM, pp. 251–259 (2003)Google Scholar
  16. 16.
    Popa, L., Rostami, A., Karp, R.M., Papadimitriou, C., Stoica, I.: Balancing traffic load in wireless networks with curveball routing. In: Proc. ACM MOBIHOC (2007)Google Scholar
  17. 17.
    Santaló, L.A.: Integral Geometry and Geometric Probability. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  18. 18.
    Stojmenovic, I.: Position based routing in ad hoc networks. IEEE Comm. Mag. 40, 128–134 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Stephane Durocher
    • 1
  • Evangelos Kranakis
    • 2
  • Danny Krizanc
    • 3
  • Lata Narayanan
    • 4
  1. 1.School of Computer ScienceUniversity of WaterlooWaterlooCanada
  2. 2.School of Computer ScienceCarleton UniversityOttawaCanada
  3. 3.Department of Mathematics and Computer ScienceWesleyan UniversityUSA
  4. 4.Department of Computer ScienceConcordia UniversityMontréalCanada

Personalised recommendations