Improved Algorithms for Bicluster Editing

  • Jiong Guo
  • Falk Hüffner
  • Christian Komusiewicz
  • Yong Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4978)


The NP-hard Bicluster Editing is to add or remove at most k edges to make a bipartite graph G = (V,E) a vertex-disjoint union of complete bipartite subgraphs. It has applications in the analysis of gene expression data. We show that by polynomial-time preprocessing, one can shrink a problem instance to one with 4k vertices, thus proving that the problem has a linear kernel, improving a quadratic kernel result. We further give a search tree algorithm that improves the running time bound from the trivial O(4 k  + |E|) to O(3.24 k  + |E|). Finally, we give a randomized 4-approximation, improving a known approximation with factor 11.


Bipartite Graph Approximation Factor Improve Algorithm Fractional Packing Edit Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. In: Proc. 37th STOC, pp. 684–693. ACM Press, New York (2005)Google Scholar
  2. 2.
    Ailon, N., Charikar, M., Newman, A.: Proofs of conjectures in Aggregating inconsistent information: Ranking and clustering. Technical Report TR-719-05, Department of Computer Science, Princeton University (2005)Google Scholar
  3. 3.
    Amit, N.: The bicluster graph editing problem. Master’s thesis, Tel Aviv University, School of Mathematical Sciences (2004)Google Scholar
  4. 4.
    Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56(1–3), 89–113 (2004)CrossRefzbMATHGoogle Scholar
  5. 5.
    Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: PEACE: Parameterized and exact algorithms for cluster editing. Manuscript, Lehrstuhl für Bioinformatik, Friedrich-Schiller-Universität Jena (September 2007)Google Scholar
  6. 6.
    Dehne, F.K.H.A., Langston, M.A., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The cluster editing problem: Implementations and experiments. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 13–24. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Fellows, M.R., Langston, M.A., Rosamond, F.A., Shaw, P.: Efficient parameterized preprocessing for cluster editing. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 312–321. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)Google Scholar
  10. 10.
    Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: Exact algorithms for clique generation. Theory of Computing Systems 38(4), 373–392 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Guo, J.: A more effective linear kernelization for Cluster Editing. In: Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 36–47. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Hsu, W., Ma, T.: Substitution decomposition on chordal graphs and applications. In: Hsu, W.-L., Lee, R.C.T. (eds.) ISA 1991. LNCS, vol. 557, pp. 52–60. Springer, Heidelberg (1991)Google Scholar
  13. 13.
    Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. In: Lin, G. (ed.) COCOON. LNCS, vol. 4598, pp. 711–722. Springer, Heidelberg (2007)Google Scholar
  14. 14.
    Hüffner, F., Niedermeier, R., Wernicke, S.: Fixed-parameter algorithms for graph-modeled data clustering. In: Clustering Challenges in Biological Networks, World Scientific, Singapore (to appear, 2008)Google Scholar
  15. 15.
    Křivánek, M., Morávek, J.: NP-hard problems in hierarchical-tree clustering. Acta Informatica 23(3), 311–323 (1986)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1(1), 24–45 (2004)CrossRefGoogle Scholar
  17. 17.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications, vol. 31. Oxford University Press, Oxford (2006)zbMATHGoogle Scholar
  18. 18.
    Protti, F., da Silva, M.D., Szwarcfiter, J.L.: Applying modular decomposition to parameterized bicluster editing. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 1–12. Springer, Heidelberg (2006); To appear under the title “Applying modular decomposition to parameterized cluster editing problems” in Theory of Computing Systems.CrossRefGoogle Scholar
  19. 19.
    Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Applied Mathematics 144(1–2), 173–182 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Tanay, A., Sharan, R., Shamir, R.: Biclustering algorithms: A survey. In: Aluru, S. (ed.) Handbook of Computational Molecular Biology, pp. 26–1 – 26–17. Chapman Hall/CRC Press (2006)Google Scholar
  21. 21.
    van Zuylen, A.Z., Williamson., D.P.: Deterministic algorithms for rank aggregation and other ranking and clustering problems. In: Proc. 5th WAOA. LNCS, Springer, Heidelberg (to appear, 2007)Google Scholar
  22. 22.
    van Zuylen, A.Z., Hegde, R., Jain, K., Williamson, D.P.: Deterministic pivoting algorithms for constrained ranking and clustering problems. In: Proc. 18th SODA, pp. 405–414. SIAM, Philadelphia (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jiong Guo
    • 1
  • Falk Hüffner
    • 1
  • Christian Komusiewicz
    • 1
  • Yong Zhang
    • 2
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Department of Mathematical SciencesEastern Mennonite UniversityHarrisonburgUSA

Personalised recommendations