Improved Algorithms for Bicluster Editing

  • Jiong Guo
  • Falk Hüffner
  • Christian Komusiewicz
  • Yong Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4978)

Abstract

The NP-hard Bicluster Editing is to add or remove at most k edges to make a bipartite graph G = (V,E) a vertex-disjoint union of complete bipartite subgraphs. It has applications in the analysis of gene expression data. We show that by polynomial-time preprocessing, one can shrink a problem instance to one with 4k vertices, thus proving that the problem has a linear kernel, improving a quadratic kernel result. We further give a search tree algorithm that improves the running time bound from the trivial O(4k + |E|) to O(3.24k + |E|). Finally, we give a randomized 4-approximation, improving a known approximation with factor 11.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. In: Proc. 37th STOC, pp. 684–693. ACM Press, New York (2005)Google Scholar
  2. 2.
    Ailon, N., Charikar, M., Newman, A.: Proofs of conjectures in Aggregating inconsistent information: Ranking and clustering. Technical Report TR-719-05, Department of Computer Science, Princeton University (2005)Google Scholar
  3. 3.
    Amit, N.: The bicluster graph editing problem. Master’s thesis, Tel Aviv University, School of Mathematical Sciences (2004)Google Scholar
  4. 4.
    Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56(1–3), 89–113 (2004)CrossRefMATHGoogle Scholar
  5. 5.
    Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: PEACE: Parameterized and exact algorithms for cluster editing. Manuscript, Lehrstuhl für Bioinformatik, Friedrich-Schiller-Universität Jena (September 2007)Google Scholar
  6. 6.
    Dehne, F.K.H.A., Langston, M.A., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The cluster editing problem: Implementations and experiments. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 13–24. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Fellows, M.R., Langston, M.A., Rosamond, F.A., Shaw, P.: Efficient parameterized preprocessing for cluster editing. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 312–321. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)Google Scholar
  10. 10.
    Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: Exact algorithms for clique generation. Theory of Computing Systems 38(4), 373–392 (2005)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Guo, J.: A more effective linear kernelization for Cluster Editing. In: Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 36–47. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Hsu, W., Ma, T.: Substitution decomposition on chordal graphs and applications. In: Hsu, W.-L., Lee, R.C.T. (eds.) ISA 1991. LNCS, vol. 557, pp. 52–60. Springer, Heidelberg (1991)Google Scholar
  13. 13.
    Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. In: Lin, G. (ed.) COCOON. LNCS, vol. 4598, pp. 711–722. Springer, Heidelberg (2007)Google Scholar
  14. 14.
    Hüffner, F., Niedermeier, R., Wernicke, S.: Fixed-parameter algorithms for graph-modeled data clustering. In: Clustering Challenges in Biological Networks, World Scientific, Singapore (to appear, 2008)Google Scholar
  15. 15.
    Křivánek, M., Morávek, J.: NP-hard problems in hierarchical-tree clustering. Acta Informatica 23(3), 311–323 (1986)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1(1), 24–45 (2004)CrossRefGoogle Scholar
  17. 17.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications, vol. 31. Oxford University Press, Oxford (2006)MATHGoogle Scholar
  18. 18.
    Protti, F., da Silva, M.D., Szwarcfiter, J.L.: Applying modular decomposition to parameterized bicluster editing. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 1–12. Springer, Heidelberg (2006); To appear under the title “Applying modular decomposition to parameterized cluster editing problems” in Theory of Computing Systems.CrossRefGoogle Scholar
  19. 19.
    Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Applied Mathematics 144(1–2), 173–182 (2004)CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    Tanay, A., Sharan, R., Shamir, R.: Biclustering algorithms: A survey. In: Aluru, S. (ed.) Handbook of Computational Molecular Biology, pp. 26–1 – 26–17. Chapman Hall/CRC Press (2006)Google Scholar
  21. 21.
    van Zuylen, A.Z., Williamson., D.P.: Deterministic algorithms for rank aggregation and other ranking and clustering problems. In: Proc. 5th WAOA. LNCS, Springer, Heidelberg (to appear, 2007)Google Scholar
  22. 22.
    van Zuylen, A.Z., Hegde, R., Jain, K., Williamson, D.P.: Deterministic pivoting algorithms for constrained ranking and clustering problems. In: Proc. 18th SODA, pp. 405–414. SIAM, Philadelphia (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jiong Guo
    • 1
  • Falk Hüffner
    • 1
  • Christian Komusiewicz
    • 1
  • Yong Zhang
    • 2
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Department of Mathematical SciencesEastern Mennonite UniversityHarrisonburgUSA

Personalised recommendations