Advertisement

Logical Closure Properties of Propositional Proof Systems

(Extended Abstract)
  • Olaf Beyersdorff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4978)

Abstract

In this paper we define and investigate basic logical closure properties of propositional proof systems such as closure of arbitrary proof systems under modus ponens or substitutions. As our main result we obtain a purely logical characterization of the degrees of schematic extensions of \({\mathit{EF}}\) in terms of a simple combination of these properties. This result underlines the empirical evidence that \({\mathit{EF}}\) and its extensions admit a robust definition which rests on only a few central concepts from propositional logic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atserias, A., Bonet, M.L.: On the automatizability of resolution and related propositional proof systems. Information and Computation 189(2), 182–201 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Beyersdorff, O.: Classes of representable disjoint NP-pairs. Theoretical Computer Science 377, 93–109 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Beyersdorff, O.: The deduction theorem for strong propositional proof systems. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 241–252. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Bonet, M.L.: Number of symbols in Frege proofs with and without the deduction rule. In: Clote, P., Krajíček, J. (eds.) Arithmetic, Proof Theory and Computational Complexity, pp. 61–95. Oxford University Press, Oxford (1993)Google Scholar
  5. 5.
    Bonet, M.L., Buss, S.R.: The deduction rule and linear and near-linear proof simulations. The Journal of Symbolic Logic 58(2), 688–709 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Bonet, M.L., Buss, S.R., Pitassi, T.: Are there hard examples for Frege systems? In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II, pp. 30–56. Birkhäuser, Basel (1995)Google Scholar
  7. 7.
    Bonet, M.L., Pitassi, T., Raz, R.: Lower bounds for cutting planes proofs with small coefficients. The Journal of Symbolic Logic 62(3), 708–728 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Buss, S.R.: Bounded Arithmetic. Bibliopolis, Napoli (1986)Google Scholar
  9. 9.
    Buss, S.R.: An introduction to proof theory. In: Buss, S.R. (ed.) Handbook of Proof Theory, pp. 1–78. Elsevier, Amsterdam (1998)CrossRefGoogle Scholar
  10. 10.
    Cook, S.A.: Feasibly constructive proofs and the propositional calculus. In: Proc. 7th Annual ACM Symposium on Theory of Computing, pp. 83–97 (1975)Google Scholar
  11. 11.
    Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. The Journal of Symbolic Logic 44, 36–50 (1979)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39, 68–131 (1935)Google Scholar
  13. 13.
    Grollmann, J., Selman, A.L.: Complexity measures for public-key cryptosystems. SIAM Journal on Computing 17(2), 309–335 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Hájek, P., Pudlák, P.: Metamathematics of First-Order Arithmetic. In: Perspectives in Mathematical Logic, Springer, Berlin (1993)Google Scholar
  15. 15.
    Köbler, J., Messner, J., Torán, J.: Optimal proof systems imply complete sets for promise classes. Information and Computation 184, 71–92 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Krajíček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory. Encyclopedia of Mathematics and Its Applications, vol. 60. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  17. 17.
    Krajíček, J.: Interpolation theorems, lower bounds for proof systems and independence results for bounded arithmetic. The Journal of Symbolic Logic 62(2), 457–486 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Krajíček, J., Pudlák, P.: Propositional proof systems, the consistency of first order theories and the complexity of computations. The Journal of Symbolic Logic 54, 1079–1963 (1989)Google Scholar
  19. 19.
    Krajíček, J., Pudlák, P.: Quantified propositional calculi and fragments of bounded arithmetic. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 36, 29–46 (1990)CrossRefzbMATHGoogle Scholar
  20. 20.
    Pudlák, P.: Lower bounds for resolution and cutting planes proofs and monotone computations. The Journal of Symbolic Logic 62, 981–998 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Pudlák, P.: On reducibility and symmetry of disjoint NP-pairs. Theoretical Computer Science 295, 323–339 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Razborov, A.A.: On provably disjoint NP-pairs. Technical Report TR94-006, Electronic Colloquium on Computational Complexity (1994)Google Scholar
  23. 23.
    Sadowski, Z.: On an optimal propositional proof system and the structure of easy subsets of TAUT. Theoretical Computer Science 288(1), 181–193 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Sadowski, Z.: Optimal proof systems, optimal acceptors and recursive presentability. Fundamenta Informaticae 79(1–2), 169–185 (2007)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Wrathall, C.: Rudimentary predicates and relative computation. SIAM Journal on Computing 7(2), 149–209 (1978)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Olaf Beyersdorff
    • 1
  1. 1.Institut für Theoretische InformatikLeibniz Universität HannoverGermany

Personalised recommendations