Hamiltonicity of Matching Composition Networks with Conditional Edge Faults

  • Sun-Yuan Hsieh
  • Chia-Wei Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4978)

Abstract

In this paper, we sketch structure characterization of a class of networks, called Matching Composition Networks (MCNs), to establish necessary conditions for determining the conditional fault hamiltonicity. We then apply our result to n-dimensional restricted hypercube-like networks, including n-dimensional crossed cubes, and n-dimensional locally twisted cubes, to show that there exists a fault-free Hamiltonian cycle if there are at most 2n − 5 faulty edges in which each node is incident to at least two fault-free edges. We also demonstrate that our result is worst-case optimal with respect to the number of faulty edges tolerated.

Keywords

Algorithmica aspect of network problems conditional edge faults fault-tolerance graph theory Hamiltonian cycles Hamiltonicity matching composition networks multiprocessor systems restricted hypercube-like networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akl, S.G.: Parallel Computation: Models and Methods. Prentice Hall, Englewood Cliffs (1997)Google Scholar
  2. 2.
    Ascheuer, N.: Hamiltonian Path Problems in the On-Line Optimization of Flexible Manufacturing Systems. PhD thesis, University of Technology, Berlin, Germany (1995)Google Scholar
  3. 3.
    Efe, K.: The crossed cube architecture for parallel computation. IEEE Transactions on Parallel and Distributed Systems 3(5), 513–524 (1992)CrossRefGoogle Scholar
  4. 4.
    Fu, J.-S.: Fault-tolerant cycle embedding in the hypercube. Parallel Comptuing 29(6), 821–832 (2003)CrossRefGoogle Scholar
  5. 5.
    Fu, J.-S.: Conditional fault-tolerant hamiltonicity of star graphs. In: 7th Parallel and Distributed Computing, Applications and Technologies (PDCAT 2006), pp. 11–16. IEEE Computer Society, Los Alamitos (2006)CrossRefGoogle Scholar
  6. 6.
    Fu, J.-S.: Conditional fault-tolerant hamiltonicity of twisted cubes. In: 7th Parallel and Distributed Computing, Applications and Technologies (PDCAT 2006), pp. 5–10. IEEE Computer Society, Los Alamitos (2006)CrossRefGoogle Scholar
  7. 7.
    Hsieh, S.-Y., Ho, C.-W., Chen, G.-H.: Fault-free hamiltoninan cycles in faulty arrangement graphs. IEEE Transactions on Parallel and Distributed Systems 10(3), 223–237 (1999)CrossRefGoogle Scholar
  8. 8.
    Hsieh, S.-Y., Chen, G.-H., Ho, C.-W.: Longest fault-free paths in star graphs with edge faults. IEEE Transactions on Computers 50(9), 960–971 (2001)CrossRefGoogle Scholar
  9. 9.
    Hung, H.-S., Chen, G.-H., Fu, J.-S.: Conditional fault-tolerant cycle-embedding of crossed graphs. In: 7th Parallel and Distributed Computing, Applications and Technologies (PDCAT 2006), pp. 90–95. IEEE Computer Society, Los Alamitos (2006)CrossRefGoogle Scholar
  10. 10.
    Leighton, F.T.: Introduction to parallel algorithms and architecture: arrays· trees· hypercubes. Morgan Kaufmann, San Mateo, CA (1992)MATHGoogle Scholar
  11. 11.
    Park, J.-H., Chwa, K.-Y.: Recursive circulant: A new topology for multicomputer networks. In: Internation Symposium Parallel Architectures, Algorithms and Networks (ISPAN 1994), pp. 73–80. IEEE press, New York (1994)CrossRefGoogle Scholar
  12. 12.
    Park, J.-H., Kim, H.-C., Lim, H.-S.: Fault-hamiltonicity of hypercube-like interconnection networks. In: 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS 2005), IEEE Computer Society, Los Alamitos (2005)Google Scholar
  13. 13.
    Tsai, C.-H.: Linear array and ring embeddings in conditional faulty hypercubes. Theoretical Computer Science 314, 431–443 (2004)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Tseng, Y.-C., Chang, S.-H., Sheu, J.-P.: Fault-tolerant ring embedding in a star graph with both link and node failures. IEEE Transactions on Parallel and Distributed Systems 8(12), 1185–1195 (1997)CrossRefGoogle Scholar
  15. 15.
    Vaidya, A.S., Rao, P.S.N., Shankar, S.R.: A class of hypercube-like networks. In: 5th IEEE Symposium on Parallel and Distributed Proceeding (SPDP 1993), pp. 800–803. IEEE Press, Los Alamitos (1993)CrossRefGoogle Scholar
  16. 16.
    Wang, N.-C., Chu, C.-P., Chen, T.-S.: A dual-hamiltonian-path-based multicasting strategy for wormhole-routed star graph interconnection networks. Journal of Parallel and Distributed Computing 62(12), 1747–1762 (2002)CrossRefMATHGoogle Scholar
  17. 17.
    Wang, N.-C., Yan, C.-P., Chu, C.-P.: Multicast communication in wormhole-routed symmetric networks with hamiltonian cycle model. Journal of Systems Architecture 51(3), 165–183 (2005)CrossRefGoogle Scholar
  18. 18.
    Yang, X., Evans, D.J., Megson, G.M.: The locally twisted cubes. International Journal of Computer Mathematics 82(4), 401–413 (2005)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sun-Yuan Hsieh
    • 1
  • Chia-Wei Lee
    • 1
  1. 1.Department of Computer Science and Information EngineeringNational Cheng Kung University 

Personalised recommendations