Encoding Fuzzy Diagnosis Rules as Optimisation Problems

  • Antonio Sala
  • Alicia Esparza
  • Carlos Ariño
  • Jose V. Roig
Part of the Lecture Notes Electrical Engineering book series (LNEE, volume 15)


This paper discusses how to encode fuzzy knowledge bases for diagnostic tasks (i.e., list of symptoms produced by each fault, in linguistic terms described by fuzzy sets) as constrained optimisation problems. The proposed setting allows more flexibility than some fuzzy-logic inference rulebases in the specification of the diagnostic rules in a transparent, user-understandable way (in a first approximation, rules map to zeros and ones in a matrix), using widely-known techniques such as linear and quadratic programming.


Fault detection and diagnosis fuzzy mathematical programming approximate reasoning optimisation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chiang, L., Russell, E., Braatz, R.: Fault Detection and Diagnosis in Industrial Systems. Springer-Verlag, London, UK (2001)zbMATHGoogle Scholar
  2. 2.
    Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M., eds.: Diagnosis and Fault-Tolerant Control. Springer, London (2003)zbMATHGoogle Scholar
  3. 3.
    Timmer, J.: Parameter estimation in nonlinear stochastic differential equations. Chaos, Solitons and Fractals 11 (2000) 2571–2578zbMATHCrossRefGoogle Scholar
  4. 4.
    Khalil, H.: Nonlinear Systems. 3rd edn. Prentice Hall, New Jersey, USA (2002)zbMATHGoogle Scholar
  5. 5.
    Berger, J.: Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, London (1985)zbMATHGoogle Scholar
  6. 6.
    Angeli, C.: Online expert system for fault diagnosis in hydraulic systems. Expert Systems 16 (1999) 115–120CrossRefGoogle Scholar
  7. 7.
    Carrasco, E. et. al.: Diagnosis of acidification states in an anaerobic wastewater treatment plant using a fuzzy-based expert system. Control Engineering Practice 12 (2004) 59–64CrossRefGoogle Scholar
  8. 8.
    Kruse, R., Schwecke, E., Heinsohn, J., eds.: Uncertainty and vagueness in knowledge based systems: numerical methods (artificial intelligence). Springer-Verlag, Berlin, DE (1991)zbMATHGoogle Scholar
  9. 9.
    Shafer, G., Pearl, J., eds.: Readings in uncertain reasoning. Morgan Kauffman, San Mateo (CA), USA (1990)zbMATHGoogle Scholar
  10. 10.
    Dubois, D., Prade, H.: Possibilistic logic: a retrospective and prospective view. Fuzzy Sets and Systems 144 (2004) 3–23zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Yamada, K.: Diagnosis under compound effects and multiple causes by means of the conditional causal possibility approach. Fuzzy Sets and Systems 145 (2004) 183–212zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Castillo, E., Gutierrez, J., Hadi, A.: Expert Systems and Probabilistic Network Models. Springer, London (1997)Google Scholar
  13. 13.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. 2nd edn. Prentice-Hall, New Jersey, USA (2003)Google Scholar
  14. 14.
    Kyburg, H.: Higher order probabilities and intervals. International Journal of Approximate Reasoning 2 (1988) 195–209CrossRefMathSciNetGoogle Scholar
  15. 15.
    Ayoubi, M., Isermann, R.: Neuro-fuzzy systems for diagnosis. Fuzzy Sets and Systems 89 (1997) 289–307CrossRefGoogle Scholar
  16. 16.
    Jie, Z., Morris, J.: Process modelling and fault diagnosis using fuzzy neural networks. Fuzzy Sets and Systems 79 (1996) 127–140CrossRefGoogle Scholar
  17. 17.
    Juuso, E.: Fuzzy control in process industry: the linguistic equation approach. In Verbruggen, H., Zimmermann, H.J., Babuska, R., eds.: Fuzzy Algorithms for Control. Kluwer, Boston (1999) 243–300Google Scholar
  18. 18.
    Sala, A., Albertos, P.: Inference error minimisation: Fuzzy modelling of ambiguous functions. Fuzzy Sets and Systems 121 (2001) 95–111zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Sierksma, G.: Linear and Integer Programming: Theory and Practice. 2nd edn. Marcel Dekker Pub., New York (2001)zbMATHGoogle Scholar
  20. 20.
    Gass, S.: Linear Programming: methods and applications. 5th edn. Dover, Mineola, NY, USA (2003)Google Scholar
  21. 21.
    Chow, M., Sharpe, R., Hung, J.: On the application and design consideration of artificial neural network fault detectors. {IEEE} Transactions on Industrial Electronics 40 (1993) 181–198CrossRefGoogle Scholar
  22. 22.
    Yao, J., Yao, J.: Fuzzy decision making for medical diagnosis based on fuzzy number and compositional rule of inference. Fuzzy Sets and Systems 120 (2001) 351–366zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Meyer, C.: Matrix Analysis and Applied Linear Algebra. Society for Industrial & Applied Mathematics {(SIAM)} (2001)Google Scholar
  24. 24.
    Jarvensivu, M., Juuso, E., Ahavac, O.: Intelligent control of a rotary kiln fired with producer gas generated from biomass. Engineering Applications of Artificial Intelligence 14 (2001) 629–653CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Antonio Sala
    • 1
  • Alicia Esparza
    • 1
  • Carlos Ariño
    • 1
  • Jose V. Roig
    • 1
  1. 1.Systems Engineering and Control Dept.Univ. Politécnica de Valencia Cno. Vera s/n46022 ValenciaSpain

Personalised recommendations