Advertisement

Automated Generation of Optimal Controllers through Model Checking Techniques

  • Giuseppe Della Penna
  • Daniele Magazzeni
  • Alberto Tofani
  • Benedetto Intrigila
  • Igor Melatti
  • Enrico Tronci
Part of the Lecture Notes Electrical Engineering book series (LNEE, volume 15)

Abstract

We present a methodology for the synthesis of controllers, which exploits (explicit) model checking techniques. That is, we can cope with the systematic exploration of a very large state space. This methodology can be applied to systems where other approaches fail. In particular, we can consider systems with an highly non-linear dynamics and lacking a uniform mathematical description (model). We can also consider situations where the required control action cannot be specified as a local action, and rather a kind of planning is required. Our methodology individuates first a raw optimal controller, then extends it to obtain a more robust one. A case study is presented which considers the well known truck-trailer obstacle avoidance parking problem, in a parking lot with obstacles on it. The complex non-linear dynamics of the truck-trailer system, within the presence of obstacles, makes the parking problem extremely hard. We show how, by our methodology, we can obtain optimal controllers with different degrees of robustness.

Keywords

Controller Synthesis Controller Optimization Model Checking Nonlinear Systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kautz, H., Thomas, W., Vardi, M.Y.: 05241 executive summary – synthesis and planning. In Kautz, H., Thomas, W., Vardi, M.Y., eds.: Synthesis and Planning. Number 05241 in Dagstuhl Seminar Proceedings (2006)Google Scholar
  2. 2.
    Lygeros, J., Tomlin, C., Sastry, S.: Controllers for reachability specifications for hybrid systems Special Issue on Hybrid Systems, 35 (1999)Google Scholar
  3. 3.
    Åstrom, K.J., Hägglund, T.: PID controllers - Theory, Design, and Tuning. International Society for Measurement and Con; 2nd edn (2005)Google Scholar
  4. 4.
    Li, H., Gupta, M.: Fuzzy Logic and Intelligent Systems. Kluwer Academic Publishers (1995)Google Scholar
  5. 5.
    Jin, J.: Advanced Fuzzy Systems Design and Applications. Physica-Verlag (2003)Google Scholar
  6. 6.
    Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Scientific (2005)Google Scholar
  7. 7.
    Sniedovich, M.: Dynamic Programming. Marcel Dekker (1992)Google Scholar
  8. 8.
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 1020 states and beyond. Information and Computation 98 (1992) 142–170zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Holzmann, G.J.: The SPIN Model Checker. Addison-Wesley (2003)Google Scholar
  10. 10.
    Dill, D.L., Drexler, A.J., Hu, A.J., Yang, C.H.: Protocol verification as a hardware design aid. In: Proceedings of the 1991 IEEE International Conference on Computer Design on VLSI in Computer & Processors, IEEE Computer Society (1992) 522–525Google Scholar
  11. 11.
    Hu, A.J., York, G., Dill, D.L.: New techniques for efficient verification with implicitly conjoined bdds. In: DAC ’94: Proceedings of the 31st Annual Conference on Design Automation, New York, USA, ACM Press (1994) 276–282Google Scholar
  12. 12.
    http://www.dsi.uniroma1.it/∼tronci/cached.murphi.html (2006)Google Scholar
  13. 13.
    Della Penna, G., Intrigila, B., Melatti, I., Tronci, E., Venturini Zilli, M.: Exploiting transition locality in automatic verification of finite state concurrent systems. STTT 6 (2004) 320–341CrossRefGoogle Scholar
  14. 14.
    Murphi Web Page: http://sprout.stanford.edu/dill/murphi.html (2004)Google Scholar
  15. 15.
    Stern, U., Dill, D.: Using magnetic disk instead of main memory in the murϕ verifier. In Hu, A.J., Vardi, M.Y., eds.: Computer Aided Verification, 10th International Conference, CAV ’98, Vancouver, BC, Canada, June 28-July 2, Proceedings. Volume 1427 of Lecture Notes in Computer Science, Springer (1998) 172–183Google Scholar
  16. 16.
    Stern, U., Dill, D.L.: Improved probabilistic verification by hash compaction. In: CHARME ’95: Proceedings of the IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware Design and Verification Methods, London, UK, Springer-Verlag (1995) 206–224Google Scholar
  17. 17.
    Nguyen, D., Widrow, B.: The truck backer-upper: an example of self learning in neural networks. In: W.T. Miller, R.S. Sutton, and P.J. Werbos, eds.: Neural Networks For Control, Mit Press Series In Neural Network Modeling and Connectionism. MIT Press, Cambridge, MA (1990) 287–299Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Giuseppe Della Penna
    • 1
  • Daniele Magazzeni
    • 1
  • Alberto Tofani
    • 1
  • Benedetto Intrigila
    • 2
  • Igor Melatti
    • 3
  • Enrico Tronci
    • 3
  1. 1.Dipartimento di InformaticaUniversitÀ di L’AquilaItaly
  2. 2.Dipartimento di Matematica Pura ed ApplicataUniversitÀ di Roma “Tor Vergata”Italy
  3. 3.Dipartimento di InformaticaUniversità di Roma “La Sapienza”Italy

Personalised recommendations